Rh(III)-Catalyzed sp ${ }^{3} /$ sp 2-C-H Heteroarylations via Cascade C-H Activation and Cyclization

Atul K. Chaturvedi, Rahul K. Shukla, Chandra M. R. Volla*
Department of Chemistry, Indian Institute of Technology Bombay
Powai, Mumbai-400076, India.
E-mail: chandra.volla@chem.iitb.ac.in

Supporting Information

Table of Contents

1. General considerations and reagent information S2
2. General procedure for the synthesis of starting materials S2
3. Optimization details S5
4. General synthetic procedures S6
5. Gram Scale synthesis and late-stage functionalization S7
6. Control Experiments S8
7. Spectroscopic data for new compounds S12
8. References \quad S50
9. 1H and 13C NMR spectra of the compounds S51
1) General considerations reagent information. Unless otherwise stated, all reactions were carried out under air atmosphere in screw cap reaction tubes. All the solvents were bought from Aldrich in sure-seal bottle and were used as received. $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}$, another reagent was bought from Aldrich. For column chromatography, silica gel (100-200 mesh) from Finar Co. was used. A gradient elution using petroleum ether and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel 60F254). All starting materials were prepared according to the reported procedures in the literatures and the analytical data are in accord with the literature.

Analytical information. All isolated compounds are characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectroscopy. In addition, all the compounds are further characterized by HRMS Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR can be found in the supporting information. Nuclear magnetic resonance spectra were recorded either on a Bruker 500 or a 400 MHz instrument. All ${ }^{1} \mathrm{H}$ NMR experiments are reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ${ }^{13} \mathrm{C}$ NMR spectra was reported in ppm relative to deuteron chloroform (77.16 $\mathrm{ppm})$, unless otherwise stated, and all were obtained with ${ }^{1} \mathrm{H}$ decoupling.

2) General procedure for synthesis of starting material

a) Synthesis of N -protected 2-alkynylbenzenamine ${ }^{1}$

Step-1 ${ }^{\text {st }}$

Adapting a known procedure, $\mathrm{CuI}(43.5 \mathrm{mg}, 0.23 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(160.2 \mathrm{mg}$, $0.23 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and alkyne ($5.70 \mathrm{mmol}, 1.25$ equiv.) were added to a stirred solution of 2-iodoaniline ($1.00 \mathrm{~g}, 4.566 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{3} \mathrm{~N}$ ($12.7 \mathrm{~mL}, 91.32 \mathrm{mmol}, 20$ equiv.), at room temperature. The mixture was allowed to react for 12-18 h (until starting material get consumed), concentrated under reduced pressure, and submitted to column chromatography on silica gel to afford the compound.

Step-2 ${ }^{\text {nd }}$

To a solution of 2-(ethynyl)benzenamine (1 equiv.) and pyridine (2 equiv.) in 20 mL of dichloromethane was added 4-methylbenzene-1-sulfonyl chloride or substituted benzene-1sulfonyl chloride (1 equiv.) at $0{ }^{\circ} \mathrm{C}$, then the reaction solution was warmed to room temperature. After the reaction was complete (about 10 h) as monitored by TLC, water was added, and the mixture was extracted with ether. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel to afford the compound.
b) Procedure for the synthesis of natural product containing N-protected 2alkynylbenzenamine ${ }^{2}$

Into a 100 mL roundbottom flask equipped with a stirring bar were dissolved (1 equiv) of 4iodobenzoic acid, (1.5 equiv) of DCC, (0.2 equiv) of DMAP, and (0.2 equiv) of TsOH in dry DCM/THF mixture ($4: 1 \mathrm{v} / \mathrm{v}$). The solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath, into which (2 mmol) of alcohal dissolved in 10 mL of DCM/THF (4:1 v/v) was added dropwise. The reaction mixture was stirred overnight. After filtration, the solution was concentrated by a rotary evaporator and purified by column chromatography (silica gel).

A mixture of substituted iodobenzene (1 equiv.), $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ (4 equiv.) in THF was stirred under N_{2} atmosphere for 20 min . Then 2-ethynylaniline (1.25 equiv.) was added very slowly. The resulting reaction mixture was stirred at room temperature for $12-18 \mathrm{~h}$ (until starting material get consumed) under N_{2} atmosphere. After the removal of triethylamine, the reaction mixture was poured in water $(50 \mathrm{~mL})$ and extracted with chloroform ($3 \times 40 \mathrm{~mL}$). The combined chloroform layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of solvent, the residue was chromatographed over silica gel using petroleum ether/ethyl acetate (95/5, V/V) as eluent, affording desired product.
The coupling product aniline was dissolved in dichloromethane (20 mL), pyridine (2 equiv) and 4-methylbenzene-1-sulfonyl chloride (1.5 equiv.) was added at $0{ }^{\circ} \mathrm{C}$. The reaction solution was warmed to room temperature. After the reaction was complete (about 10 h) as monitored by TLC, water was added, and the mixture was extracted with ether. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel to afford the compound.

c) Procedure for the synthesis of quinolyl ether

A three-necked, round-bottomed flask is equipped with a stirring bar, nitrogen inlet and rubber septum. The flask is charged with alcohol (1 equiv.), 7-chloro-8-methylquinolin-4-ol (1.2 equiv.), triphenylphosphine $\left(\mathrm{PPh}_{3}\right.$) (1.5 equiv.) and dry tetrahydrofuran (0.1 M). The flask is immersed in an ice bath, diethyl azodicarboxylate (1.5 equiv.) is added dropwise at a rate such that the temperature of the reaction mixture is maintained below $10^{\circ} \mathrm{C}$. Upon completion of the addition, the flask is removed from the ice bath and the solution is allowed to stir at room temperature overnight ($12-14 \mathrm{hr}$). The reaction mixture is diluted with ether, and washed twice with saturated aqueous sodium bicarbonate solution. The combined organic phase was dried over sodium sulphate. The solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel to afford the compound.

3) Optimization of the reaction conditions ${ }^{a}$

	 1	 2	Catalyst (2 mol\%) Additive, solvent			
Entry ${ }^{\text {a }}$	Catalyst	Additive 1 (mol\%)	Additive 2 (mol\%)	T(${ }^{\circ} \mathrm{C}$)	Solvent	Yield (\%)b
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (30)	-	rt-80	MeCN	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	-	rt-80	HFIP	0
3	$\mathrm{Ru}\left(p\right.$-cymene) Cl_{2}	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	DCE	0
4	$\mathrm{Ru}\left(p\right.$-cymene) Cl_{2}	$\mathrm{NaOAc}(30)$	AgOTf (10)	rt	DCE	0
5	$\mathrm{Ru}\left(p\right.$-cymene) Cl_{2}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(30)$	AgOTf (10)	rt	DCE	trace
6	$\mathrm{Ru}\left(p\right.$-cymene) Cl_{2}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(30)$	AgOTf (10)	80	DCE	20
7	$\mathrm{Ru}\left(p\right.$-cymene) Cl_{2}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(30)$	AgOTf (10)	80	MeOH	trace
8	$\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}\right]_{2}$	$\mathrm{AdCO}_{2} \mathrm{H}(30)$	AgOTf (10)	rt-80	TFE	0
9	$\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt-80	TFE	0
10	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	-	rt-80	DCE	0
11	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	DCE	63
12	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	70	DCE	54
13	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	DCM	32
14	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	DCB	25
15	$\left[\mathrm{Cp} \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	MeCN	nr
16	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	THF	nr
17	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	Dioxane	$n \mathrm{r}$
18	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	MeOH	nr
19^{c}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(30)$	AgOTf (10)	rt	DCE	74
20^{d}	[$\left.\mathbf{C p}^{*} \mathbf{R h C l}_{2}\right]_{2}$	$\mathbf{C u}(\mathbf{O A c})_{2}(30)$	AgOTf (10)	rt	DCE	82
21^{d}	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	AgOAc (100)	AgOTf (10)	rt	DCE	44
$22^{\text {d }}$	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgOPiv (100)	AgOTf (10)	rt	DCE	42

[^0] $\mathrm{mol} \%$), ${ }^{b}$ NMR Yield, ${ }^{c} \mathbf{2}$ (1.5 equiv.) ${ }^{d} \mathbf{2}$ (2.0 equiv.)

4) General procedure for cascade \mathbf{C} - \mathbf{H} activation and nucleophilic cyclization

a) General procedure for $\mathrm{Sp}^{\mathbf{3}} \mathbf{C}$-H activation and nucleophilic (C-N) cyclization

To an oven dried screw-cap reaction tube equipped with stir bar, 8-methylquinoline (0.1 mmol), o-ethynyl aniline (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ catalyst ($2 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.03$ $\mathrm{mmol})$ and $\mathrm{Ag}(\mathrm{OTf})(0.01 \mathrm{mmol})$ were added sequentially, followed by DCE $(1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24-30 hrs (until consumption of starting material). The completion of the reaction was confirmed by checking TLC under UV detector. Then, the organic phase was evaporated under reduced pressure and the product was purified by using silica-gel column chromatography (eluent: Hexane/Ethyl acetate $=9 / 1$)
b) General procedure for cascade $\mathbf{S p}^{\mathbf{3}} \mathbf{C}$ - \mathbf{H} activation and nucleophilic (C-C) cyclization

To an oven dried screw-cap reaction tube equipped with stir bar, 8-methylquinoline (0.1 mmol), methoxybiaryl ynone (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ catalyst ($2 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.03$ $\mathrm{mmol})$ and $\mathrm{Ag}(\mathrm{OTf})(0.01 \mathrm{mmol})$ were added sequentially, followed by DCE $(1 \mathrm{~mL})$. The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ under O_{2} for $14-16 \mathrm{hrs}$. The completion of the reaction was confirmed by checking TLC under UV detector. Then, the organic phase was evaporated under reduced pressure and the product was purified by using silica-gel column chromatography (eluent: Hexane/Ethyl acetate $=7 / 3$)

c) General procedure for cascade $\mathbf{S p}^{\mathbf{2}} \mathbf{C}$-H activation, OAT and nucleophilic cyclization

To an oven dried screw-cap reaction tube equipped with stir bar, quinoline N-oxide (0.1 mmol), o-ethynyl aniline (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ catalyst ($2 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.03 \mathrm{mmol})$ and $\operatorname{AgOTf}(0.01 \mathrm{mmol})$ were added sequentially, followed by DCE $(1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for $30-36 \mathrm{hrs}$. The completion of the reaction was confirmed by checking TLC under UV detector. Then, the organic phase was evaporated under reduced pressure and the product was purified by using silica-gel column chromatography (eluent : Hexane/Ethyl acetate $=8 / 2$).

5. Gram scale synthesis and late stage functionalization

a. Gram scale

A mixture of 8 -methylquinoline ($4.0 \mathrm{mmol}, 572 \mathrm{mg}$), o-ethynyl aniline (8.0 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ catalyst $(2 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(0.03 \mathrm{mmol})$ and $\mathrm{Ag}(\mathrm{OTf})(0.01 \mathrm{mmol})$ were added sequentially, followed by DCE $(15 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under oxygen for 30 hrs . The completion of the reaction was confirmed by checking TLC under UV detector. Then, the organic phase was evaporated under reduced pressure and the product was purified by using silica-gel column chromatography (eluent: Hexane/Ethyl acetate $=9 / 1$) affording $3(1.5 \mathrm{gm}, 78 \%)$.

b. Removal of directing group ${ }^{3}$

In an oven dried reaction tube 0.1 mmol of $\mathbf{1 4}$ was taken. Then cesium carbonate (3 equiv) in THF:MeOH (2:1) 1.5 mL was added to it. The mixture was stirred in a preheated oil bath at $70{ }^{\circ} \mathrm{C}$ for 12 hours. After completion reaction was cooled to room temperature and evaporated under vacuum. Pure product of $\mathbf{7 2}$ with 92% yield was isolated through silica gel column chromatography (mesh 100-200). Eluent: ethyl acetate / petroleum ether ($5: 95 \mathrm{v} / \mathrm{v}$).

c. Reduction of 3^{4}

In an oven dried reaction tube 0.1 mmol of $\mathbf{3}$ was taken in $2: 1$ mixture of $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ mL). Then $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$ and sodium borohydride (8 equiv, 0.8 mmol) was added to it. The mixture was stirred in a preheated oil bath at $70^{\circ} \mathrm{C}$ for 12 hours. After completion reaction was cooled to room temperature and evaporated under vacuum. Pure product 73 with 71% yield was isolated through silica gel column chromatography (mesh 100-200). Eluent: ethyl acetate / petroleum ether ($5: 95 \mathrm{v} / \mathrm{v}$).

6. Control Experiments

a. Preparation of Intermediate 70^{4}

Intermediate 70 was prepared by heating the mixture of 8 -methyl-quinoline ($85.9 \mathrm{mg}, 0.6$ $\mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(18.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{NaOAc}(24.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and
$\mathrm{MeOH}(1 \mathrm{~mL})$ in a reaction tube for 6 h . The reaction mixture was then concentrated under vacuum. The product was purified by column chromatography on silica gel (eluent: $\mathrm{EtOAc} /$ petroleum ether $=1: 2$).

b. Preparation of deuterated quinoline ${ }^{5}$

A mixture of 8- methylquinoline (1a) ($172.0 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(18.4 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 2.5 \mathrm{~mol} \%$), $\mathrm{CD}_{3} \mathrm{COOD}\left(216.4 \mathrm{mg}, 3.6 \mathrm{mmol}, 300 \mathrm{~mol} \%\right.$), $\mathrm{Cu}(\mathrm{OAc})_{2}(436.0 \mathrm{mg}, 2.4$ $\mathrm{mmol}, 200 \mathrm{~mol} \%)$ and $\mathrm{D}_{2} \mathrm{O}(4 \mathrm{~mL})$ in 10 mL reaction tube was heated at $100{ }^{\circ} \mathrm{C}$ under air for 48 h . After cooling down, the reaction mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layer was dried over MgSO 4 and concentrated in vacuo. The residue was purified by flash column chromatography (n -hexanes/EtOAc $=10: 1$) to afford $1 \mathrm{a}-\mathrm{d} 3(168.4 \mathrm{mg}, 95 \% \mathrm{D})$ in 96% yield.
c. General procedure for the KIE experiments:
(i) $\mathbf{P}_{\mathrm{H}} / \mathbf{P D}_{\mathrm{D}}$

A mixture of substituted 8-methyl-quinoline ($0.1 \mathrm{mmol}, 1$ equiv.), or 8-methyl-quinoline-D3 ($0.1 \mathrm{mmol}, 1$ equiv.), 4-methyl-N-(2-(phenylethynyl)phenyl)benzenesulfonamide (0.24 mmol, 2.4 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(30 \mathrm{~mol} \%)$ were weighted in a same reaction tube equipped with a stir bar. DCE $(2.0 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 30 min . The solvent was evaporated under reduced pressure and the residue was absorbed to small amounts of silica. The purification was performed by column chromatography on silica gel (eluent: EtOAc/petroleum ether $=5: 95$).

(ii) K_{H} / K_{D}

or

A mixture of substituted 8-methyl-quinoline ($0.1 \mathrm{mmol}, 1$ equiv.), or 8 -methyl-quinoline-D3 ($0.1 \mathrm{mmol}, 1$ equiv.), 4-methyl-N-(2-(phenylethynyl)phenyl)benzenesulfonamide (0.12 mmol, 1.2 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(30 \mathrm{~mol} \%)$ were weighted in a reaction tube equipped with a stir bar. DCE $(2.0 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 30 min . Afterwards, the two independent reactions were poured into a same round flask, the solvent was evaporated under reduced pressure and the residue was absorbed to small amounts of silica. The purification was performed by column chromatography on silica gel (eluent: $\mathrm{EtOAc} /$ petroleum ether $=5: 95$).

7. Spectroscopic data for new compounds

3, 80%

8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinolone (3)

$39.1 \mathrm{mg}, 80 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.95$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.41 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.17 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.33$ $(\mathrm{m}, 8 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{dd}, J=7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.50,146.67,144.53,138.93,138.28,138.16,136.48$, $134.90,131.88,131.42,131.04,129.31,128.64,128.29,127.86,127.62,127.12,126.28$, $126.23,125.17,124.36,123.13,121.24,120.06,116.99,25.65,21.75$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 489.1631$; Found 489.1652.

4, 81\%

8-((2-(p-tolyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (4)

$40.7 \mathrm{mg}, 81 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.92(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{p}, J=6.1 \mathrm{~Hz}, 7 \mathrm{H}), 6.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.37$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, CDCl 3) $\delta 149.48,146.69,144.46,139.14,138.49,138.37,138.11$, $136.46,134.89,132.00,130.87,129.27,128.48,128.40,128.28,127.86,127.13,126.23$, $125.02,124.33,122.86,121.21,119.95,117.01,25.68,21.75,21.57$.
HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S} 525.1607$; Found 525.1599.

5, 76\%

8-((2-(4-(tert-butyl)phenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (5)

$41.5 \mathrm{mg}, 76 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.95(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 5 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.41$ ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 151.49,149.49,146.74,144.39,139.24,138.44,138.18$, $136.49,134.94,131.94,130.68,129.24,128.30$, 127.93, 127.22, 126.26, 126.22, 124.98, $124.53,124.26,122.79,121.22,119.96,117.02,34.82,31.47,25.73,21.76$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 545.2257$; Found 545.2268.

6, 82\%

8-((2-(4-methoxyphenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (6)

$42.5 \mathrm{mg}, 82 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.93(\mathrm{dd}, J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl 3) $\delta 159.90$, 149.47, 146.66, 144.46, 138.87, 138.35, 138.06, $136.49,134.98,132.33,131.95,129.28,128.29,127.83,127.10,126.24,124.95,124.31$, 123.60, 122.52, 121.22, 119.87, 117.00, 113.12, 55.33, 25.69, 21.75.

HRMS (ESI-TOF) m/z:[M+H] ${ }^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 519.1737; Found 519.1759.

7, 46\%

8-((2-(4-bromophenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (7)

$26.1 \mathrm{mg}, 46 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.6$ (hexane/ethyl acetate, $9.1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38$ (ddd, $J=8.4,6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.51,144.75,142.11,139.26,138.21,137.57,134.75$, $133.10,132.49,131.82,130.89,130.40,129.79,129.41,128.35,127.61,127.04,126.28$, $125.49,124.56,123.72,123.09,121.33,120.11,117.05,25.72,21.77$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 567.0736$; Found 567.0756.

methyl 4-(3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate (8)

37.7 mg , 69% yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.42$ (ddd, $J=8.4,6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.61$ (d, J = 7.0 Hz, 1H), 4.57 (s, 2H), 3.93 (s, 3H), 2.41 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.95,149.47,144.79,138.39,137.79,137.71,136.18$, 134.50 , 131.91, 130.90, 129.99, 129.41, 128.87, 128.34, 127.79, 127.04, 126.50, 126.24, $125.68,124.66,124.41,121.33,120.22,117.13,52.30,25.73,21.77$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 547.1686$; Found 547.1703.

8-((1-tosyl-2-(4-(trifluoromethyl)phenyl)-1H-indol-3-yl)methyl)quinoline (9)
$36.7 \mathrm{mg}, 66 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.36$ (m, 2H), 7.31 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.12$ (m, $5 \mathrm{H}), 6.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.62,146.58,144.84,138.36,137.90,137.18,136.51$, 135.23, 134.58, 131.84, 131.18, 130.23 (q, $J=33.0 \mathrm{~Hz}$), 129.44, 128.35, 127.75, 127.04, 126.55, 126.17, 125.77, 124.69, 124.62 (q, $J=4.0 \mathrm{~Hz}$), 121.39, 120.27, 117.12, 25.74, 21.78.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) δ-62.57.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 557.1506$; Found 557.1532.

10, 52%
8-((2-(4-nitrophenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (10)
$27.8 \mathrm{mg}, 52 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.30$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.17(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 7.49 - 7.42 (m, 2H), 7.32 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.11$ (m, $3 \mathrm{H}), 6.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.68$, 147.64, 146.52, 145.05, 138.61, 138.36, 137.67, $136.52,136.28,134.28,131.96,131.60,129.52$, $128.39,127.71,127.38,126.98,126.74$, 126.22, 126.14, 124.97, 122.86, 121.49, 120.44, 117.26, 25.85, 21.79.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} 534.1482$; Found 534.1498.

11, 40\%

8-((2-(3-bromophenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (11)

$22.7 \mathrm{mg}, 40 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.1,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{q}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.18,144.79,136.98,136.38,136.00,133.23,132.83$, $132.73,130.48,130.42,129.79,129.62,129.14,128.34,127.60,127.21,126.98,126.55$, 126.32, 125.22, 123.62, 122.38, 121.06, 120.57, 115.51, 25.54, 21.75

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 567.0736$; Found 567.0752.

12, 71\%
8-((2-(3-chlorophenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (12)
$37.1 \mathrm{mg}, 71 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57 ($\mathrm{s}, 2 \mathrm{H}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.54,146.58,144.80,138.13,137.98,137.04,136.48$, $134.93,133.48,133.20,131.53,131.03,129.44,129.33,128.86,128.74,128.34,127.96$, 127.06, 126.46, 126.23, 125.49, 124.40, 123.81, 121.29, 120.25, 116.82, 25.57, 21.76.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{2} \mathrm{~S} 545.1061$; Found 545.1054.

13, 68\%
8-((2-(2,6-dimethoxyphenyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (13)
$37.3 \mathrm{mg}, 68 \%$ yield, red solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.2,5.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3) $\delta 159.69,149.10,143.89,138.22,137.30,136.89,136.60$, 131.23, 131.01, 130.68, 129.29, 129.15, 127.27, 126.46, 125.80, 124.05, 122.78, 121.51, 120.84, 119.95, 114.94, 108.95, 103.33, 55.41, 25.33, 21.66.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S} 571.1662$; Found 571.1661.

14, 80\%

8-((2-(naphthalen-1-yl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (14)

$43.1 \mathrm{mg}, 80 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.82(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $11.5,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7,39(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.63(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.26,146.49,144.52,137.93,137.61,136.40,136.10$, $135.69,133.95,133.23,130.79,129.86,129.68,129.30,128.84,128.44,128.19,128.09$, $127.12,126.34,126.30,126.27,126.14,125.79,125.02,124.58,123.69,123.21,121.01$, 120.39, 115.80, 25.52, 21.63.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 539.1788$; Found 539.1787.

8-((2-(9H-fluoren-2-yl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (15)

$41.5 \mathrm{mg}, 72 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (s, 2H), 7.42 (dd, $J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.36,144.52,143.75,142.40,142.14,141.43,139.33$, $138.22,138.16,135.02,131.90,129.65,129.28$, 128.31, 128.11, 127.98, 127.16, 127.09, $126.91,126.35,126.28,125.15,125.10,124.33,122.95,121.19,120.23,120.01,118.99$, 116.96, 37.03, 25.71, 21.75.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 577.1944; Found 577.1965.

16, 73\%

8-((2-(thiophen-2-yl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (16)

$36.1 \mathrm{mg}, 73 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.50,146.61,144.62,138.20,138.10,136.47,135.03$, $131.63,131.41,131.24,130.69,129.40,128.31,128.25,127.99,127.14,126.48,126.32$, 126.23, 125.56, 125.23, 124.29, 121.22, 120.19, 116.75, 25.81, 21.76.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}_{2}$ 517.1009; Found 517.1015

17, 68\%
4-(1-((4-(tert-butyl)phenyl)sulfonyl)-2-phenyl-1H-indol-3-yl)- N -(quinolin-8-
yl)butanamide (17)
$33.5 \mathrm{mg}, 68 \%$ yield, yellow sticky solid.
$\boldsymbol{R}_{f}: 0.10$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR $(400 ~ M H z, ~ C D C l 3) ~ \delta ~ 9.05-8.96(m, 1 H), 8.26(d, J=8.4 ~ H z, 1 H), 8.20(d, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (dd, $J=7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12$ (m, 3H), $7.10-7.02$ (m, 2H), 6.67 (d, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=40.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=35.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.29-$ $1.99(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.63(\mathrm{~m}, 4 \mathrm{H})$.

[^1]HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}$ 515.1764; Found 515.1756.

18, 68\%

8-((2-propyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (18)

$30.9 \mathrm{mg}, 68 \%$ yield, yellow sticky solid.
$\boldsymbol{R}_{f}: 0.60$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.01(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.53,146.83,144.46,139.77,138.06,137.42,136.54$, $136.13,131.65,129.71,128.37,128.02,126.41,126.31,124.20,123.74,121.21,120.30$, 119.27, 115.78, 28.80, 25.07, 24.29, 21.68, 14.16.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 455.1788$; Found 455.1778 .

19, 64\%

8-((2-butyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (19)

30.0 mg , 64% yield, yellow sticky solid.
$\boldsymbol{R}_{f}: 0.60$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.01(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.21-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dt}, J=15.3,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.31(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.47,144.48,139.97,137.98$, 137.39, 136.67, 136.08, 131.64, 129.72, 128.37, 128.11, 126.41, 126.36, 126.31, 124.17, 123.74, 121.21, 120.08, 119.21, 115.75, 33.08, 26.69, 25.00, 22.84, 21.69, 13.90.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 469.1944; Found 469.1958.

8-((5,7-dichloro-2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (20)
$22.9 \mathrm{mg}, 41 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47$ (s, 2H), 2.45 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.53,144.91,144.79,138.37,137.41,137.12,136.33$, 134.34, 131.57, 130.89, 130.37, 129.29, 129.13, 128.46, 127.95, 127.83, 127.62, 126.75, $126.29,126.02,123.94,121.51,118.50,26.04,21.86$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 557.0852$; Found 557.0856.

8-((1-((4-(tert-butyl)phenyl)sulfonyl)-2-phenyl-1H-indol-3-yl)methyl)quinoline (21) $43.5 \mathrm{mg}, 82 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 8.92(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 7 \mathrm{H})$, $7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 1.30$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 157.54,149.44,138.80,138.27,137.98,136.54,135.24$, $131.51,131.35,131.19,128.65,128.30,127.92,127.59,126.97,126.32,126.27,125.72$, $125.11,124.15,122.59,121.22,120.10,116.68,35.34,31.18,25.66$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}$ 553.1920; Found 553. 1913.

8-((1-((4-chlorophenyl)sulfonyl)-2-phenyl-1H-indol-3-yl)methyl)quinoline (22)
$39.7 \mathrm{mg}, 78 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.95(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $149.48,146.51,140.26,138.75,138.10,138.05,136.59$, 135.86, 132.13, 131.67, 131.14, 130.93, 129.01, 128.83, 128.52, 128.35, 127.75, 126.46, 126.32, 125.47, 124.82, 123.91, 121.30, 120.25, 117.11, 25.71.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{2} \mathrm{~S} 531.0904$; Found 531.0898.

8-((1-((2,4-difluorophenyl)sulfonyl)-2-phenyl-1H-indol-3-yl)methyl)quinoline (23) $38.3 \mathrm{mg}, 75 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{dd}, J=13.3,6.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{dt}, J=16.4,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 166.69(\mathrm{dd}, J=132.5,11.25 \mathrm{~Hz}$), $160.29(\mathrm{dd}, J=260.63$, 12.50 Hz), 149.43, 146.55, 138.09, 137.54, 136.58, 132.83, 132.74, 131.38, 130.68, 130.65, $128.77,128.35,128.06,127.65,126.42,126.38,125.12,124.09,122.19,121.22,120.28$, $116.16,111.62(\mathrm{~d}, J=26.25 \mathrm{~Hz}), 105.59(\mathrm{t}, J=25.61 \mathrm{~Hz}), 25.53$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-98.56, -102.42.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}$ 533.1106; Found 533.1099.

24, 69\%

5-methyl-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (24)

34.7 mg , 69\% yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.95(\mathrm{dd}, J=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.35$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{dd}, J=$ $13.9,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 148.90$, 146.78, 144.50, 138.90, 138.17, 136.08, 134.89, 132.97, 132.76, 131.97, 131.46, 131.03, 129.75, 129.31, 128.60, 127.68, 127.60, 127.12, $126.74,125.13,124.35,123.28,120.80,120.08,117.00,25.67,21.76,18.67$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 503.1789$; Found 503.1807.

25, 60 \%

6-methyl-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (25)

$30.2 \mathrm{mg}, 60 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.87(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, 2 H), 2.37 ($\mathrm{s}, 3 \mathrm{H}$), 2.24 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 148.52,144.50,138.78,137.96,137.83,136.02,135.86$, $135.13,131.70$, 131.44, 131.09, 130.23, 129.37, 128.67, 128.45, 127.61, 127.08, 125.12, $125.09,124.25,122.94,121.24,120.17,116.72,25.57,21.83,21.72$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 503.1789$; Found 503.1791.

26, 56\%
7-methyl-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (26)
28.2 mg, 56\% yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=16.4,8.2 \mathrm{~Hz}$, $5 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.25,144.54,137.45,136.91,135.26,134.96,131.79$, 131.70, 131.03, 130.20, 129.36, 128.41, 127.18, 126.92, 126.65, 126.04, 124.60, 123.72, $122.45,120.16,120.12,116.02,23.29,21.67,20.60$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S} 525.1607$; Found 525.1601.

27, 74\%
4,6-dimethyl-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (27)
$38.2 \mathrm{mg}, 74 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.60$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14$ (m, 4H), $6.62(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 148.12,144.49,138.77,138.26,137.98,135.60,135.09$, $131.76,131.45,131.07,129.80,129.37,128.64,128.31,127.60,127.08,125.10,124.26$, 123.12, 122.14, 121.19, 120.19, 116.73, 25.92, 22.15, 21.73, 19.18.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 517.1944$; Found 517.1956.

28, 59\%

5-chloro-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (28)

30.9 mg , 59% yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.98(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, 2.42 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.91,146.99,144.63,139.02,138.08,137.65,134.95$, 133.54, 131.57, 131.27, 131.02, 129.52, 129.35, 128.75, 127.82, 127.67, 127.12, 126.37, $126.30,125.30,124.40,122.42,122.00,119.90,116.98,25.61,21.77$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{2} \mathrm{~S}$ 545.1061; Found 545.1056.

29, 48\%

7-chloro-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (29)

$25.1 \mathrm{mg}, 48 \%$ yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.85(\mathrm{dd}, J=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 150.01,144.42,137.25,137.19,136.40,135.66,135.50$, $131.79,131.61,131.03,129.35,128.40,128.23,127.37,126.93,126.84,126.79,124.53$, 123.66, 121.35, 121.03, 119.75, 115.97, 24.41, 21.68.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 523.1242$; Found 523.1274.

6-bromo-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (30)
$29.5 \mathrm{mg}, 52 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.60$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 149.77, 145.31, 144.77, 141.06, 139.14, 137.98, 135.46, $134.96,131.30,131.24,131.15,131.04,129.59,129.48,128.82,128.35,127.69,126.82$, 125.30, 124.37, 122.16, 121.87, 120.55, 119.90, 116.80, 25.64, 21.91.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ 567.0736; Found 567.0741.

6-phenyl-8-((2-(p-tolyl)-1-tosyl-1H-indol-3-yl)methyl)quinoline (31)

$36.1 \mathrm{mg}, 64 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 11 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.40,146.04,144.56,140.57,138.94,138.78,138.69$, $137.80,136.65,135.30,131.35,129.32$, $128.96,128.72,128.54,127.85,127.72,127.63$, 127.42, 126.76, 125.17, 124.13, 124.09, 122.44, 121.58, 120.27, 116.45, 25.68, 21.56.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 565.1944$; Found 565.1953.

6-(naphthalen-1-yl)-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (32)
$40.6 \mathrm{mg}, 66 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.99(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dd, $J=7.8$, $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=7.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=9.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.28$ (m, 3H), $7.18-7.07$ (m, 2H), $7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.61,146.09,144.31,139.45,139.18,138.92$, 138.29, $137.73,136.64,134.99,133.91,131.40,131.26,131.21,131.04,130.54,128.88,128.70$, $128.60,128.46,128.26,127.52,127.36,127.19,126.31,126.24,126.17,125.76,125.58$, 125.20, 124.17, 122.10, 121.67, 120.28, 116.80, 25.96, 21.21.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 615.2102; Found 615.2127.

33, 64\%

8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)-6-(thiophen-2-yl)quinoline (33)

$36.5 \mathrm{mg}, 64 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.89(\mathrm{dd}, J=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.30,146.12,144.57,143.77,139.01,138.70,137.66$, $136.42,135.43,132.18,131.39,131.36,131.27,129.43,128.79,128.66,128.25,127.68$, $126.92,126.70,125.64,125.18,124.14,123.94,122.34,122.31,121.80,120.24,116.36$, 25.49, 21.67.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ 571.1508; Found 571.1517.

Menthol 34, 69\%
(1R,2R,5R)-2-isopropyl-5-methylcyclohexyl 4-(3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate (34)
$46.3 \mathrm{mg}, 69 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.43$ $-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ $(\mathrm{td}, J=10.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{dd}, J=$ $6.8,1.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 165.93,144.81,138.31,137.88,135.91,134.58,132.89$, $131.80,130.85,130.78,129.44,128.87,128.45,127.06,126.53,125.66,124.63,121.29$, 120.17, 117.07, 75.07, 47.42, 41.12, 34.46, 31.60, 26.47, 25.79, 23.64, 22.17, 21.76, 20.98, 16.53.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 671.2938$; Found 671.2975.

35, 66\%

2-isopropyl-5-methylphenyl 4-(3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate

 (35)$43.8 \mathrm{mg}, 66 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.10$ (m, 3H), $7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.47,149.53,144.75,142.66,138.39,137.92,137.78$, $136.52,136.04,134.48,131.97,130.82,130.38,129.38,128.88,128.32,127.72,127.04$, 126.47, 126.17, 125.64, 124.70, 124.64, 124.45, 123.88, 121.34, 120.21, 118.43, 117.14, 92.48, 39.67, 26.42, 25.80, 21.76, 17.83, 16.70.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 665.2469$; Found 665.2501.

36, 64\%
$42.8 \mathrm{mg}, 64 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dd, $J=11.2,6.2 \mathrm{~Hz}, 3 \mathrm{H}$), 7.42 (ddd, $J=8.5,5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=8.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 166.47,149.53,144.75,142.66,138.39,137.92,137.78$, $136.52,136.04,134.48,131.97,130.82,130.38,129.38,128.88,128.32,127.72,127.04$, 126.47, 126.17, 125.64, 124.64, 124.45, 123.88, 121.34, 120.21, 118.43, 117.14, 62.02, 39.67, 26.42, 25.80, 25.72, 21.76, 17.83, 16.70.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 669.2782$; Found 669.2796 .

Vitamin E 37, 60\%
(R)-2,5,7,8-tetramethyl-2-(($4 R, 8 R$)-4,8,12-trimethyltridecyl)chroman-6-yl 4-(3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate (37)
$56.7 \mathrm{mg}, 60 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.17(\mathrm{~m}, 3 \mathrm{H})$, $7.74-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 10 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 15 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 165.06,149.64,149.55,144.82,140.82,138.48,137.93$, $137.74,136.74,134.52,132.02,131.03,129.71,129.49,129.45,128.39,127.88,127.52$, $127.12,126.53,126.25,126.09,125.75,125.33,124.72$, $123.26,121.99,121.38,120.98$, $120.28,117.62,117.21,75.24,39.53,37.71,37.62,37.55,37.45,32.94,32.87,29.84,28.13$, 25.83, 24.96, 24.60, 22.86, 22.77, 21.78, 21.22, 20.79, 19.91, 19.84, 18.41, 13.30, 12.46, 11.99.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{61} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 945.5225$; Found 945.5235

3,7-dimethyloct-6-en-1-yl 4-(3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate (38)

$43.6 \mathrm{mg}, 65 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.92(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.43-$ 7.37 (m, 1H), 7.32 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.11$ (m, 5H), 6.57 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=16.6,7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.80(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-$ $1.18(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 166.52, 149.52, 144.77, 138.40, 137.79, 136.07, 134.51, $131.95,131.52,130.86,130.38,129.40,128.84,128.34,127.78,127.06,126.48,126.21$, 125.66, 124.71, 124.66, 124.45, 121.34, 120.22, 117.15, 37.12, 35.65, 29.63, 25.83, 25.74, 25.52, 21.77, 19.61, 17.81.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 671.2938; Found 671.2967.

Cholesterol
39, 62\%
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-
$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - t e t r a d e c a h y d r o - 1 H - c y c l o p e n t a [a] p h e n a n t h r e n - 3 - y l ~ 4 - ~}$ (3-(quinolin-8-ylmethyl)-1-tosyl-1H-indol-2-yl)benzoate (39)
$55.9 \mathrm{mg}, 62 \%$ yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.93$ (dd, $\left.J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $12.5,6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.41$ (ddd, $J=8.4,5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (dd, $J=$ $7.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{t}, J=15.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.93(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 3 \mathrm{H})$, $1.14(\mathrm{dd}, J=10.3,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.90 (dd, $J=6.6,2.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 165.84,149.58,146.62,144.75,139.82,138.42,138.03$, $137.83,136.46,136.02,134.61,131.99,130.84,130.74,129.41,128.86,128.34,127.75$, $127.08,126.46,126.17,125.64,124.64,124.47,122.94,121.33,120.24,117.16,74.81$, 56.87, 56.32, 50.23, 42.49, 39.92, 39.68, 38.38, 37.20, 36.82, 36.36, 35.96, 32.10, 32.05, 28.39, 28.17, 28.05, 25.74, 24.45, 23.99, 22.97, 22.71, 21.78, 21.21, 19.52, 18.88, 12.02.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{59} \mathrm{H}_{69} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 901.4973$; Found 901.4966.

7-chloro-4-(((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - t e t r a d e c a h y d r o - 1 H}$-cyclopenta[a]phenanthren-3-yl)oxy)-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinoline (40)
$53.6 \mathrm{mg}, 59 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.30$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=11.1,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{dt}, J=7.1,5.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.65(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dd}, J=25.4,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.44-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 4 \mathrm{H})$, $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{dd}, J=21.3,9.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{dd}, J=6.6,2.1$ $\mathrm{Hz}, 7 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 160.63,150.92,137.96,137.29,137.17,136.40,135.59$, 134.60 , 131.90, 131.64, 131.10, 129.32, 128.19, 127.05, 126.91, 126.86, 124.45, 123.65, 123.06, 121.90, 121.57, 120.89, 119.93, 115.95, 101.98, 73.76, 56.81, 56.28, 50.51, 42.44, $39.85,39.65,37.20,36.31,36.26,35.94,33.88,32.09,31.98,28.36,28.15,25.86,24.66$, 24.39, 23.96, 22.96, 22.70, 21.67, 20.96, 19.14, 18.86, 12.01.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{58} \mathrm{H}_{68} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ 907.4634; Found 907.4652.

2-chloro-3-(((7-chloro-8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)quinolin-4-yl)oxy)methyl)-8-methylquinoline (47)
$47.3 \mathrm{mg}, 65 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3 $\left._{3}\right) \delta 8.71(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=11.8,8.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}$, 3 H), 2.34 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.03,151.03,148.98,147.86,146.77,144.41,137.54$, $137.24,137.18,136.81,136.72,135.61,135.14,131.81,131.62,131.16,131.02,129.33$, $128.20,127.58,127.49,127.19,127.11,126.90$, 126.84, 125.68, 124.51, 123.67, 121.38, 121.34, 119.80, 119.75, 115.95, 101.39, 67.28, 24.72, 21.66, 17.95.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ 728.1536; Found 728.1545.

2'-phenyl-3'-(quinolin-8-ylmethyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (49)
$21.5 \mathrm{mg}, 49 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.82(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.19-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.34 (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.42 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 185.19,183.71,153.28,149.64,149.20,146.47,139.21$, $138.72,138.27,136.35,136.19,133.20,130.76,130.14,129.02,128.37,128.34,128.21$, 127.80, 127.76, 127.02, 126.23, 126.16, 121.02, 51.12, 29.30.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{NO}_{2} 440.1645$; Found 440.1671.

2'-(4-fluorophenyl)-3'-(quinolin-8-ylmethyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (50)
$21.0 \mathrm{mg}, 46 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.79(\mathrm{dd}, J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (ddd, $J=11.1,8.8,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.5,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 184.95,183.62,162.43(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 152.04,149.43$, 149.21, 146.39, 140.05, 138.65, 138.17, 136.33, 133.28, 132.09 (d, $J=3.5 \mathrm{~Hz}), 130.63$, 130.26, 129.71 (d, $J=8.2 \mathrm{~Hz}$), 129.09, 128.35, 128.33, 128.27, 127.23, 126.26, 126.22, 121.07, $114.91(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 51.08,29.06$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-113.15.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{FNO}_{2} 458.1551$; Found 458.1561.

2'-(4-methoxyphenyl)-3'-(quinolin-8-ylmethyl)-4'H-spiro[cyclohexane-1,1'naphthalene]-2,5-diene-4,4'-dione (51)
$28.6 \mathrm{mg}, 61 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.82(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.69-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.19(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (s, 2H), 3.70 (s, 3H).
${ }^{13}$ C NMR (126 MHz, CDCl3) δ 185.26, 183.76, 159.35, 153.34, 149.84, 149.16, 146.51, $139.62,138.87,138.34,136.32,133.11,130.79,130.09,128.97,128.95,128.65,128.36$, $128.31,128.18,127.02,126.22,126.11,120.98,113.24,55.19,51.41,29.25$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NO}_{3} 470.1751$; Found 470.1763.

2'-(4-bromophenyl)-3'-((5-chloroquinolin-8-yl)methyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (52)
$24.3 \mathrm{mg}, 44 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 8.84(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H})$,
$7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, 2 H), 4.38 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 185.08,183.68,153.56,149.68,149.43,146.98,138.90$, $138.30,138.26,136.12,133.30,133.11,130.66,130.21,129.29,129.06,128.42,128.36$, $128.20,127.85,127.72,126.96,126.29,126.25,121.77,51.10,29.22$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{BrClNO}_{2}$ 552.0360; Found 552.0371.

2'-(4-fluorophenyl)-3'-((6-methylquinolin-8-yl)methyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (53)
$18.9 \mathrm{mg}, 40 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=12.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.51(\mathrm{~m}$, 2H), $7.43-7.38$ (m, 1H), 7.33 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.35(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H})$, 2.65 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 185.01,183.65,162.45(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 161.46,151.92$, $149.54,148.68,146.57,140.10,138.16,136.45,133.25,132.76,130.69,130.24,129.73$ (d, J $=8.8 \mathrm{~Hz}), 129.08,128.31(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}), 127.73,126.82,126.68,120.65,114.99,114.82$, 113.77, 51.10, 29.17, 18.65.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-113.19.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{FNO}_{2}$ 472.1707; Found 472.1743.

2'-(4-methoxyphenyl)-3'-((6-phenylquinolin-8-yl)methyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (54)
$22.9 \mathrm{mg}, 42 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}$, $1 \mathrm{H}), 7.63-7.56$ (m, 3H), 7.48 (d, $J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.40-6.23(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 185.25,183.56,159.52,149.85,149.11,140.90,139.97$, $139.52,139.48,138.78,136.47,133.08,130.08,129.06,128.98,128.55,128.27,127.71$, 127.56, 127.48, 127.43, 123.95, 123.93, 121.32, 114.09, 113.27, 55.14, 51.42, 29.41.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{NO}_{3} 546.2064$; Found 546.2072.

3'-((6-bromoquinolin-8-yl)methyl)-2'-(4-methoxyphenyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (55)
$31.2 \mathrm{mg}, 57 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.80(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,4.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.63(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 185.21, 183.55, 159.44, 153.68, 149.61, 149.43, 145.14, $141.48,139.21,138.32,135.30,133.24,130.78,130.64,130.19,129.43,129.04,128.95$, $128.45,128.37,128.26,128.02,121.84,120.30,113.31,55.22,51.39,29.01$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{BrNO}_{3} 548.0856$; Found 548.0887.

3'-((7-chloroquinolin-8-yl)methyl)-2'-(4-fluorophenyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (56)
$16.7 \mathrm{mg}, 34 \%$ yield, yellow sticky liquid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $4: 6 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.71(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{dd}$, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.43$ ($\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.22(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 185.10,183.35,161.78(\mathrm{~d}, J=241.3 \mathrm{~Hz}), 149.67,149.42$, 148.90 , 140.05, 137.88, 137.14, 136.04, 134.68, 133.04, 131.90, 130.46, 129.95, 129.93, 129.39 (d, $J=8.8 \mathrm{~Hz}$), 128.97, 128.42, 128.18, 128.08, 126.98, 126.64, 120.95, 113.95 (d, J $=21.3 \mathrm{~Hz}$), 51.12, 26.40.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$-114.18.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{ClFNO}_{2} 492.1161$; Found 492.1165 .

2-(2-methylquinolin-8-yl)-2-phenyl-1-tosylindolin-3-one (58)
$28.8 \mathrm{mg}, 57 \%$ yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.50$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.77$ - 7.70 (m, 4H), 7.52 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.24$ $(\mathrm{td}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}$), 1.68 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.01,156.74,151.25,145.64,142.62,136.60,136.36$, $136.32,136.21,135.67,135.58,128.67,128.23,128.18,127.96,126.19,125.13,124.99$, 124.57, 123.28, 121.32, 114.98, 79.43, 23.19, 21.19.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 505.1580$; Found 505.1555.

59, 59\%

2-(2-methylquinolin-8-yl)-2-(p-tolyl)-1-tosylindolin-3-one (59)

$30.6 \mathrm{mg}, 59 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.68(\mathrm{~m}$, $4 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.41$ (d, J = 8.1 Hz, 2H), 2.40 (s, 3H), 2.05 (s, 3H), 1.68 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.11,156.70,151.25,145.65,142.55,138.04,136.66$, $136.33,136.25,135.64,135.51,133.20,128.96,128.62$, 127.93 , 126.18, 125.15, 125.11, $124.99,124.61,123.21,121.28,114.93,79.30,23.21,21.18$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 519.1737; Found 519.1772.

2-(4-methoxyphenyl)-2-(2-methylquinolin-8-yl)-1-tosylindolin-3-one (60)
$32.1 \mathrm{mg}, 60 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ $-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 2.06 ($\mathrm{s}, 3 \mathrm{H}$), 1.68 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.16,159.70,156.71,151.20,145.64,142.58,136.62$, $136.32,136.23,135.64,135.50,132.58$, 130.00, 128.64, 127.95, 127.49, 126.19, 125.15, $125.01,124.62,123.25,121.29,114.95,114.63,78.97,55.44,23.22,21.19$.

HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 535.1686$; Found 535.1694.

61, 62\%
2-(4-(tert-butyl)phenyl)-2-(2-methylquinolin-8-yl)-1-tosylindolin-3-one (61)
$34.7 \mathrm{mg}, 62 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\delta 8.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{dd}, J=$ $12.2,5.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.65$ ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.21,156.69,151.28,151.00,145.65,142.55,136.67$, $136.37,136.26,135.65,135.51,133.02,128.62,127.94,126.19,125.24,125.22,125.14$, $124.99,124.58,123.20,121.27,114.94,79.38,34.64,31.45,23.21,21.19$.

HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}$ 583.2026; Found 586.2033.

62, 46\%

2-(2-methylquinolin-8-yl)-2-(4-nitrophenyl)-1-tosylindolin-3-one (62)

$25.28 \mathrm{mg}, 46 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.30$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} H$ NMR (400 MHz, CDCl3) $\delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-8.10(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.65(\mathrm{~m}$, $5 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) δ 195.83, 157.13, 151.25, 147.91, 145.39, 144.30, 143.05, $136.19,136.16,136.09,135.82,135.43,129.17,128.06,126.31,125.19,125.00,124.78$, 124.67, 123.76, 123.30, 121.68, 115.11, 79.17, 23.15, 21.23.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S} 550.1431$; Found 550.1433.

63, 40\%
(5,7-dichloro-2-(2-methylquinolin-8-yl)-2-phenyl-1-tosylindolin-3-one (63)
$22.9 \mathrm{mg}, 40 \%$ yield, yellow solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}$, $2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl3) $\delta 193.61,157.34,145.87,145.32,142.86,139.52,137.97$, $137.00,136.76,136.48,135.78,129.93,129.13,128.84,128.74,128.53,128.40,126.51$, $125.74,125.37,123.24,122.03,119.98,83.05,23.63,21.35$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 573.0801$; Found 573.0808.

64, 54\%
2-(3-methylbenzo[f]quinolin-5-yl)-2-phenyl-1-tosylindolin-3-one (64)
$30.0 \mathrm{mg}, 54 \%$ yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.50$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.54-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, $8.08-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{dd}, J=13.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $16.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.22 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ (s, 3H), 1.72 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.78,155.91,151.48,145.21,142.55,138.40,136.63$, $136.22,135.58,134.83,130.69,130.45,130.22,130.01,128.36,128.33,128.24,127.88$, $127.23,125.31,125.05,124.65,123.30,123.03,121.81,121.27,114.99,22.60,21.23$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 555.1737$; Found 555.1735.

65, 52\%
2-(3-(4-methoxyphenyl)quinolin-8-yl)-2-phenyl-1-tosylindolin-3-one (65)
$31.0 \mathrm{mg}, 52 \%$ yield, white solid.
$\boldsymbol{R}_{\boldsymbol{f}}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=$
$7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.00,159.91,151.32,147.31,144.97,142.88,136.77$, $136.75,136.39,136.33,135.89,133.30,131.58,129.83,129.16,128.33,128.26,128.17$, 127.96, 126.44, 125.23, 124.88, 124.71, 123.47, 114.91, 114.68, 79.57, 55.52, 21.30.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 597.1843$; Found 597.1853.

66, 64\%
1-((4-(tert-butyl)phenyl)sulfonyl)-2-(2-methylquinolin-8-yl)-2-phenylindolin-3-one (66) $35.0 \mathrm{mg}, 64 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.64 (dd, $J=18.8,8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.62 (s, 3H), 1.09 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.04,156.61,155.42,151.20,145.67,136.45,136.37$, $136.35,136.32$, $135.71,135.55,128.59,128.23$, 128.20 , 126.13 , 125.19, 125.16, 125.10, $124.58,124.40,123.25,121.86,114.98,79.47,34.80,30.95,23.16$

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}$ 569.1869; Found 569.1877.

(E)-3,7-dimethylocta-2,6-dien-1-yl-4-(2-(2-methylquinolin-8-yl)-3-oxo-1-tosylindolin-2yl)benzoate (67)

$31.5 \mathrm{mg}, 46 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=39.1,10.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.12-$ 2.07 (m, 2H), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.32,166.53,156.88,151.25,145.51,142.77,142.59$, $141.60,136.45,136.29,135.81,135.78$, 135.72, 131.95, 130.41, 129.37, 128.87, 127.98, $127.33,126.23,125.14,124.98,124.58,123.91,123.46,121.45,118.48,115.02,79.41$, $61.94,39.66,26.44,25.81,23.16,21.19,17.84,16.70$
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 685.2731; Found 685.2735.

Thymol
68, 49\%
2-isopropyl-5-methylphenyl-4-(2-(2-methylquinolin-8-yl)-3-oxo-1-tosylindolin-2yl)benzoate (68)
$33.4 \mathrm{mg}, 49 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dt}, J=23.4,8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.83$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=20.3,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 7.07$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=12.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.69$ (s, 3H), $1.23-1.20(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.32,165.24,156.97,151.31,148.26,145.52,142.85$, $142.53,137.38,136.74,136.43,136.31,135.94$, 135.77, 135.71, 130.88, 130.03, 129.50, 128.97, 128.02, 127.27, 126.58, 126.37, 126.28, 125.20, 125.01, 124.65, 123.55, 123.00, 121.53, 115.06, 79.48, 27.36, 23.25, 23.19, 21.23, 21.02.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 681.2418; Found 681.2437.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl-4-(-2-(2-methylquinolin-8-yl)-3-oxo-1-tosylindolin-2-yl)benzoate (69)
$40.4 \mathrm{mg}, 42 \%$ yield, brown sticky liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $8: 2 \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 5 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ $-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 9 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dd}$, $J=13.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 10 \mathrm{H}), 1.16(\mathrm{dd}, J=22.9,16.3 \mathrm{~Hz}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=7.6$ Hz, 15H).
${ }^{13}$ C NMR (126 MHz, CDCl3) $\delta 196.35,165.05,156.95,151.33,149.58,145.54,142.82$, $142.34,140.79,136.47,136.35,135.92,135.77,135.75,130.01,129.54,128.96,128.02$, $127.42,127.11,126.28,125.33,125.20,125.01,124.97,124.66,123.54,123.24,121.52$, $117.60,115.05,79.50,75.20,39.51,37.68,37.60,37.53,37.43,32.93,32.92,32.87,28.12$, $24.95,24.59,23.20,22.87,22.77,21.23,21.19,20.77,19.90,19.83,19.74,13.21,12.36$, 11.99.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{61} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} 977.5184$; Found 961.5177.

72, 92\%
8-((2-(naphthalen-1-yl)-1H-indol-3-yl)methyl)quinoline (72)
$35.3 \mathrm{mg}, 92 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.90(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.19,146.81,139.72,136.41,136.29,134.99,133.82$, 132.81, 130.64, 129.01, 128.92, 128.84, 128.72, 128.39, 128.23, 126.63, 126.50, 126.14, 125.77, 125.36, 122.26, 120.88, 120.20, 119.68, 113.23, 110.83, 25.78.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{2} 385.1699$; Found 385.1715 .

73, 71\%

8-((2-phenyl-1-tosyl-1H-indol-3-yl)methyl)-1,2,3,4-tetrahydroquinoline (73)

$35.0 \mathrm{mg}, 71 \%$ yield, white solid.
$\boldsymbol{R}_{f}: 0.50$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2 H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), $1.97-1.88(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta} 144.62,138.59,138.22,134.46,132.01,131.26,131.05$, $130.96,129.34,129.30,128.75,127.73,127.64,127.10,127.01,125.93,125.28,124.61$, 122.20, 120.10, 117.16, 42.37, 27.41, 25.91, 21.79, 21.72.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 493.1953$; Found 493.1952.

70
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.88(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dd, $J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 15 \mathrm{H})$.

8-(methyl-d3)quinoline

$168.4 \mathrm{mg}, 96 \%$ yield, colourless liquid.
$\boldsymbol{R}_{f}: 0.40$ (hexane/ethyl acetate, $9: 1 \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.98(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 0.15 \mathrm{H})$.

8. References

1. (a) Brand, J. P.; Chevalley, C.; Waser, J. Beilstein J. Org. Chem. 2011, 7, 565-569.
(b) Boominathan, S. S. K.; Senadi, G. C.; Vandavasi, J. K.; Chen, J. Y.-F.; Wang, J-J. Chem. Eur. J. 2015, 21, 3193-3197.
2. Pramanick, P. K.; Zhou, Z.; Hou, Z.; Ao, Y.; Yao, B. Chin. Chem. Lett. 2020, 31, 1327-1331.
3. Bajwa, J. S.; Chen, G.-P.; Prasad, K.; Repic, O.; Blacklock, T. J. Tetrahedron. Lett. 2006, 47, 6425-6427.
4. Liu, B.; Zhou, T.; Li, B.; Xu, S.; Song, H.; Wang, B. Angew. Chem. Int. Ed. 2014, 53, 4191-4195.
5. Wang, H.-W.; Wu, J.-X.; Qiao, Y.-H.; Li, Y.-F.; Li, D.-C.; J.-M. D.; Yao, Q.-X.; Lu, Y. Org. Lett. 2021, 23, 7177-7182.
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Compounds

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

(CMRV-AT-318-1H

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\footnotetext{
CMRV-AT-502-1H
CMRV-AT-502-1H

CMRV-AT-502-19F-DECOUP.10.fid
CMRV-AT-502-19F-DECOUP

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 \operatorname{lel} \int \| l$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]: ${ }^{a}$ All reactions were carried out using substituted $\mathbf{1}$ (1 equiv.), $\mathbf{2}$ (1.1 equiv.), catalyst (2

[^1]: ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.29,144.42,141.71,138.51,137.60,135.12,132.01$, 131.11, 130.21, 129.69, 129.28, 128.34, 128.21, 127.41, 127.04, 126.46, 126.16, 124.70, $124.00,121.19,121.05,119.95,116.36,30.81,25.70,25.68,22.79,22.01,21.73$.

