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1 Experimental section

2 Synthesis of Na2Fe2(SO4)3@C

3 FeSO4·H2O (Aladdin, 99.0%) was first annealed at 280 °C for 12 hours in an N2 

4 atmosphere to obtain anhydrous FeSO4. The Na2Fe2(SO4)3@C (NFS@C) composites 

5 were synthesized through a low-temperature solid-state reaction method. Initially, a 

6 mixture was prepared by anhydrous Na2SO4 (Aladdin, 99.0%) and anhydrous FeSO4 in 

7 a 1:2 molar ratio, along with different conductive carbons in a 7:1 mass ratio, such as 

8 Ketjen Black (Lion Corporation, EC-600JD), super p (Imerys, SUPER P-Li), acetylene 

9 black (Guangdong Canrd New Energy Technology Co., Ltd. Kappa 100), and 

10 conductive graphite KS6 (Imerys, KS-6). Finally, the mixture was homogeneously 

11 blended in a planetary ball mill under argon atmosphere at 800 rpm for 6 hours. Next, 

12 the precursor was transferred to a quartz tube filled with N2 atmosphere and subjected 

13 to a sintering process at 350 oC for 24 h. Finally, these particles were ground in a mortar 

14 and pestle for 10 min to obtain the final sample NFS@C. The samples were labeled as 

15 NFS@KB, NFS@SP, NFS@AB, and NFS@G, according to the type of conductive 

16 carbon used.

17 Material characterization

18 The crystal structure of the NFS@C composites was examined using an Aeris 

19 Research Benchtop X-Ray Diffractometer from Malvern Panalytical equipped with a 

20 CuKα radiation source. The morphologies of the composites were characterized by field 

21 transmission scanning electron microscopy (FE-SEM, EVO 10) and transmission 



1 electron microscope (TEM, JEM-2100F). The specific surface area of 

2 Na2Fe2(SO4)3@C composite material was investigated using a nitrogen adsorption and 

3 desorption analysis with a surface area and pore size analyzer (V-Sorb 2802TP). Raman 

4 spectra (HORIBA XploRA PLUS) were collected in the range of 500-2500 cm-1 to 

5 characterize the carbon coating. The vibrational states of existing functional groups 

6 were examined via FT-IR (spectral resolution of 4 cm−1 on a SHIMADZU IRAffinity-

7 1S). Thermogravimetric (TG) analysis was conducted using an Integrated Thermal 

8 Analyzer (ZCT-A), at a heating rate of 5 oC min−1, from room temperature to 600 oC. 

9 X-ray photoelectron spectroscopy (XPS, PHI-5000 VPIII) was utilized to investigate 

10 the chemical states of Fe and C elements.

11 Electrochemical characterization

12 The electrochemical properties of the NFS@C composites were performed in 

13 CR2032 coin half cells. The material powder was mixed with Ketjen Black and 

14 polyvinylidene fluoride (PVDF) binder (80:10:10 by weight) in N-methyl-2-

15 pyrrolidone (NMP), and then the slurry was coated on an Al foil uniformly. The foil 

16 with active material was dried at 80 °C for 6 h in vacuum with a loading about 1.5-2 

17 mg cm–2 and cut into circle electrode (diameter 10 mm). Sodium (Na) metal served as 

18 both the counter and reference electrode, while Glass fiber membranes (Whatman, 

19 GF/D) were utilized as separators. The electrolyte adopted was 1 M NaClO4 in a 

20 mixture of EC/DEC (1:1 in volume) with an additional 2 wt% FEC. Concerning the 

21 fabrication of graphite electrode for the assembly of full cells, an 80% mixture of 



1 Japanese carbon was combined with 10% super p and 10% Water-based adhesive (SA2) 

2 binder, subsequently applied as a coating on Al foil, and utilized as the anode in the 

3 coin cell architecture. All the coin cells were assembled inside a glove box filled with 

4 Ar gas, wherein the levels of O2 and H2O were meticulously regulated to remain below 

5 0.1 ppm. Galvanostatic charge/discharge tests were conducted on a Neware test system 

6 (Neware Technology Limited) under various current densities. The voltage window 

7 between 2 and 4.5 V was selected. In addition, Cyclic Voltammetry (CV) tests were 

8 conducted on the CHI660E electrochemistry workstation with scan speeds ranging 

9 from 0.1 to 0.5 mV s−1.
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2

3 Figure S1. FT-infrared spectra of NFS@C composite materials and bare NFS.
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2 Figure S2. Raman spectrum of NFS@C composite materials and bare NFS.
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2 Figure S3. TG curve of NFS@C composite materials in N2 atmosphere.
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2 Figure S4. SEM image of bare NFS.
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2 Figure S5. Enlarged lattice fringes of (a) NFS@KB, (b) NFS@SP, (c) NFS@AB, and 

3 (d) NFS@G, and the FFT image in the inset.
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2 Figure S6. HAADF image and the corresponding Na, Fe, C, O, and S elemental 

3 mappings of (a) NFS@SP, (b) NFS@AB, and (c) NFS@G.
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2 Figure S7. (a) Cycling performance at 0.05 A g-1 and (b) rate performance of 

3 NFS@KB, bare NFS and NFS ADD KB.
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2 Figure S8. The select charge/discharge curves of (a) Bare NFS, (b) NFS@KB, (c) 

3 NFS@SP, (d) NFS@AB, and (e) NFS@G.
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2 Figure S9. Charge/discharge curves of (a) bare NFS, (b) NFS@KB, (c) NFS@SP, (d) 

3 NFS@AB, and (e) NFS@G at different current densities.
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2 Figure S10. CV curve of NFS@C from 0.1 mV s-1 to 0.5 mV s-1, The relevant b-values 

3 determination for the anodic and cathodic peaks of corresponding (a) NFS@SP, (b) 

4 NFS@AB and (c) NFS@G.
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2 Figure S11. CV curve of bare NFS from 0.1 mV s-1 to 0.5 mV s-1.
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2 Figure S12. Linear relationship of voltage vs.  in GITT of (a) NFS@KB, (b) 𝜏

3 NFS@SP, (c) NFS@AB, and (d) NFS@G.
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2 Figure S13. The time versus voltage curve for a single titration.

3



1

2 Figure S14. Galvanostatic intermittent titration technique (GITT) curves of (a) 

3 NFS@SP, (b) NFS@AB, and (c) NFS@G material for the charge and discharge 

4 process.
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2 Figure S15. (a) The select charge/discharge curves for NFS@KB at 0.5 A g-1 at 60 °C, 

3 (b) the select charge/discharge curves for NFS@KB at -10 °C at 0.1 A g-1.
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2 Figure S16. (a) SEM, (b) XRD, (c) cycling properties, and (d) rate performance of 

3 commercially available hard carbon.
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1 Table S1. Mass loadings of polyanionic cathode materials in reported literatures.

Cathode materials Active material loading Reference

Na2FeP2O7 1.5-3.5 mg cm-2 1

Na4Fe3(PO4)2(P2O7)@C ~2.5 mg cm-2 2

Na4Fe3(PO4)2(P2O7)@C@rGO ~2.5 mg cm-2 2

Na2MnP2O7 1.6±0.1 mg cm-2 3

Na2Fe(SO4)2@rGO/C ~1.5 mg cm-2 4

Na2Fe2(SO4)3@C ~1.6 mg cm-2 5

Na2Fe2(SO4)3@C@GO ~1.6 mg cm-2 5

Na3V2(PO4)3 3.2-3.3 mg cm-2 6

Na2Mn2(SO4)3 ~2.2 mg cm-2 7

NaFePO4@C ~2.5 mg cm-2 8

Na2Fe2(SO4)3@KB 1.5-2.0 mg cm-2 This work

2

3
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