Rational Design of CT-coupled J-Aggregation Platform based on Aza-BODIPY for Highly Efficient Phototherapy

Shengmei Wu,^{a†} Wenze Zhang,^{b†} Chaoran Li^b, Zhigang Ni,^a Weifeng Chen,^a Lizhi Gai,^{* a} Jiangwei Tian,^{*b} Zijian Guo^c and Hua Lu^{*a}

Table of Contents

I. Experimental Section

I.1 Methods and materials	S2
I.2 Synthesis	S3-S5
I.3 TD-DFT calculations	S6
I.4 Spectroscopic measurements	S7
I.5 Preparation of nanoparticle	S8-S10
I.6 PTT properties of dyes	S11
I.7 PDT properties of BDP1-2 NPs	S12
I.8 General animals culture	S13-S15
II. ¹ H NMR, ¹³ C NMR spectra and HR-MS	S16-S30
III. Cartesian coordinates	S31-S39
IV. References	S40

Experimental Procedures

I. 1 Methods and materials

All reactions were carried out under a dry argon atmosphere by using Schlenk techniques. All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air- and moisture-sensitive reactions were carried out under a nitrogen atmosphere. Glassware was dried in an oven at 100°C and cooled under a stream of inert gas before use. Dichloromethane was distilled over calcium hydride. All the solvents employed for the spectroscopic measurements were of spectroscopic grade. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 250–400 mesh silica gel containing a fluorescent indicator (Merck). Flash column chromatography (200 mesh) was carried out using silica gel purchased from Qingdao Haiyang Silica Gel Co.

¹H NMR, ¹³C NMR spectra were recorded on a Bruker DRX400 / 500 spectrometer and referenced to the residual proton signals of the solvent, reporting chemical shifts in ppm compared to SiMe₄. The ¹H NMR coupling constants (J) are reported in Hertz (Hz) and the multiplicity is expressed as follows: s (singlet), d (doublet), m (multiplet). HR-MS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. UV-visible absorption spectra and fluorescence emission spectra were recorded on a commercial spectrophotometer (Shimadzu UV-1800 and Horiba JobinYvonFluorolog-3 spectrofluorometers) at room temperature. The diameter of the nanoparticles was determined by dynamic light scattering (DLS) on a Zetasizer Nano ZSE (Malvern, UK) with a semiconductor laser (50 nW) as a light source. Confocal laser scanning microscope (CLSM) images were performed on Zeiss LSM710 confocal laser scanning microscope. The PA signals of disease areas were measured by Visualsonic Vevo 2100 LAZER system. Photothermal effects were determined using a UNI-T UT325 thermometer. Infrared (IR) thermal imaging was performed using a FLIR E53 thermal imaging camera.

I.2 Synthesis

General synthetic method for 1a-1e

To a solution of benzaldehyde (5.0 g, 42 mmol) and 2-acetylthiophene (4.7 g, 42 mmol) in ethanol (50 mL) were added an aqueous solution of sodium hydroxide (8.4 g, 210 mmol, 10 mL water) under ice bath conditions. The mixture was stirred at room temperature for 12 h. After the reaction is complete, the products precipitated were filtered, washed with aqueous ethanol, and dried in a vacuum. **1a**, white solid (93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.84 (m, 2H), 7.69–7.68 (m, 1H), 7.66–7.64 (m, 2H), 7.45–7.41 (m, 4H), 7.19 (dd, *J* = 4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 182.2, 145.6, 144.2, 134.8, 134.1, 132.0, 130.7, 129.1, 128.6, 128.4, 121.7.

1b, white solid (88% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.97 (m, 1H), 7.87 (dd, *J* = 4 Hz, 1H), 7.70 (dd, *J* = 8, 4 Hz, 1H), 7.45 (d, *J* = 8 Hz, 1H), 7.39 (d, *J*= 4 Hz, 1H), 7.22–7.19 (m, 2H), 7.13–7.11 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 143.7, 138.9, 134.5 132.4, 129.2, 128.4, 128.1, 127.6, 79.5.

1c, white solid (75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.80 (m, 2H), 7.68 (dd, *J* = 4 Hz, 1H), 7.18 (dd, *J* = 4 Hz, 1H), 7.11–7.09 (m, 1H), 7.07 (s, 1H), 7.05 (d, *J* = 4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 145.4, 141.8, 135.6, 134.2, 132.6, 131.9, 131.5, 128.4, 120.7, 116.6.

1d, yellow solid (78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8, 4 Hz , 2H), 7.67 (d, *J* = 4 Hz, 1H), 7.59 (d, *J* = 8 Hz, 2H), 7.30–7.29 (m, 1H), 7.20 (t, *J* = 4 Hz, 1H), 6.73 (d, *J* = 8 Hz, 2H), 3.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.2, 152.2, 146.5, 145.1, 133.0, 131.0, 130.6, 128.2, 122.5, 116.4, 111.9, 40.2.

1e, white solid (91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 4 Hz, 1H), 7.79–7.75 (m, 1H), 7.70 (d, *J* = 4 Hz, 1H), 7.56–7.48 (m, 4H), 7.42–7.38 (m, 1H), 7.18 (t, *J* = 8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 145.1, 141.5, 139.1, 134.8, 132.8, 132.4, 128.9, 128.6, 124.8, 118.5, 113.7.

General synthetic method for 2a-2e

Compound **1a** (5.0 g, 23 mmol), nitromethane (8.8 mL, 184 mmol), and diethylamine (18.9 mL, 184 mmol) were dissolved in ethanol (50 mL), and the mixture was refluxed for 3 hours. After cooling to room temperature, the resulting mixture was evaporated to dryness and then dissolved in ethyl acetate. The mixture was washed with water and brine, dried with sodium sulfate, and concentrated to give the crude product. Purification by column chromatography (EA: PE = 1:4) yields the desired products. **2a**, yellow oily liquid (76%). ¹H NMR (400 MHz, CDCl₃)

δ 7.72 (dd, *J* = 4 Hz, 1H), 7.68 (dd, *J* = 4 Hz, 1H), 7.38–7.34 (m, 2H), 7.31–7.28 (m, 3H), 7.15 (dd, *J* = 4 Hz, 1H), 4.89–4.84 (m, 1H), 4.75–4.70 (m, 1H), 4.27–4.19 (m, 1H), 3.48–3.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 138.6, 129.0, 128.8, 128.5, 128.4, 128.2, 126.7, 125.9, 124.1, 122.4, 38.1, 24.7, 17.6.

The synthesis method of compound **2b** is the same as that of **2a**. **2b**, yellow oily liquid (72%).¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 4 Hz, 1H), 7.67 (d, *J* = 4 Hz, 1H), 7.20 (d, *J* = 4 Hz, 1H), 7.14 (t, *J* = 4 Hz, 1H), 6.96–6.92 (m, 2H), 4.86 (dd, *J* = 8, 4 Hz, 1H), 4.73 (dd, *J* = 8, 4 Hz, 1H), 4.55–4.49 (m, 1H), 3.49–3.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.4, 143.5, 141.6, 134.7, 132.6, 128.5, 127.3, 125.8, 124.9, 79.8, 42.9, 35.0.

The synthesis method of compound **2c** is the same as that of **2a**. **2c**, yellow oily liquid (62%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 4 Hz, 1H), 7.68 (d, *J* = 4 Hz, 1H), 7.21 (d, *J* = 4 Hz, 1H), 7.14–7.13 (m, 1H), 7.96–7.92 (m, 2H), 6.72 (d, *J* = 4 Hz, 1H), 4.85 (dd, *J* = 8, 4 Hz, 1H), 4.72 (dd, *J* = 8, 4 Hz, 1H), 4.55–4.49 (m, 1H), 3.39–3.49(m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.0, 143.2, 134.9, 132.6, 130.1, 130.0, 128.5, 126.4, 111.6, 79.4, 42.5, 35.3.

Synthesis of compound **2d** is the same as that of **2a. 2d**, yellow oily liquid (63%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 4 Hz, 1H), 7.65 (dd, *J* = 4 Hz, 1H), 7.14–7.11 (m, 3H), 6.68 (d, *J* = 8 Hz, 2H), 4.81–4.76 (m, 1H), 4.67– 4.62 (m, 1H), 4.13–4.06 (m, 1H), 3.40–3.28 (m, 2H), 2.92 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 150.0, 143.8, 134.3, 132.3, 128.3, 128.2, 126.2, 112.9, 79.9, 42.5, 40.6, 38.9.

The synthesis method of compound **2e** is the same as that of **2a**. **2e**, yellow oily liquid (75%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, *J* = 4 Hz, 2H), 7.64 (d, *J* = 8 Hz, 2H), 7.42 (d, *J* = 8 Hz, 2H), 7.15–7.12 (m, 1H), 4.88–4.83 (m, 1H), 4.75–4.69 (m, 1H), 4.31–4.24 (m, 1H), 3.39 (d, *J* = 8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.9, 144.3, 143.2, 134.9, 133.0, 132.5, 128.6, 128.5, 118.4, 112.2, 78.8, 41.7, 39.4.

General synthetic method for BDP1-5.

2a (1.0 g, 3.6 mmol) and ammonium acetate (9.3 g, 126 mmol) were dissolved in n-butanol (25 mL) and refluxed the mixture for 14 hours. After cooling to room temperature, the resulting precipitate was collected, and washed with water (50 mL) and EtOH (60 mL). The resulting solid was allowed to dry in the oven to obtain the products Azadipyrromethene, which were used in the next step without further purification.

To a new distilled solution of CH₂Cl₂ (60 mL), Azadipyrromethene (100 mg, 0.22 mmol) was added along with N, N-diisopropylethylamine(0.5 mL) under an ice bath. After stirring for 10 minutes, BF₃•OEt₂ (1.0 mL) was added carefully and the mixture was allowed to stir at room temperature for 3 h. The crude mixture was diluted with dichloromethane and washed with water and brine. The organic layer was dried over magnesium sulphate and the solvent was removed under reduced pressure. Chromatography on silica with CH₂Cl₂ afforded **BDP1** (45%) as a coppery, shining solid. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 4 Hz, 2H), 8.06 (dd, *J* = 8, 4 Hz, 4H), 7.65 (d, *J* = 8 Hz, 2H), 7.48–7.46 (m, 3H), 7.44–7.42 (m, 3H), 7.29–7.27 (m, 2H), 7.18 (s, 2H). HR-MS(ESI): [M+H]⁺ calcd for C₂₈H₁₉BF₂N₃S₂ m/z=510.1076; found m/z=510.1006.

The synthesis of compound **BDP2** is the same as that of **BDP1**. **BDP2**, coppery, shining solid (40%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 4 Hz, 2H), 7.93 (d, *J* = 4 Hz, 2H), 7.63 (d, *J* = 8 Hz, 2H), 7.57 (d, *J* = 4 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 7.21–7.19 (m, 2H), 7.07 (s, 2H). HR-MS(ESI): [M]⁺ calcd for C₂₄H₁₄BF₂N₃S₄ m/z=521.0132; found m/z=521.0173.

The synthesis of compound **BDP3** is the same as that of **BDP1**. **BDP3**, coppery, shining solid (32%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (t, *J* = 4 Hz, 1H), 8.30 (d, *J* = 4 Hz, 1H), 7.91 (d, *J* = 4 Hz, 1H), 7.65–7.60 (m, 3H), 7.58–7.54 (m, 2H), 7.20–7.17 (m, 1H), 7.11 (d, *J* = 4 Hz, 1H), 7.05 (s, 1H), 6.97 (s, 1H). HR-MS(ESI): [M]⁺ calcd for C₂₄H₁₂BBr₂F₂N₃S₄ m/z=676.8342; found m/z=676.8355.

Compound **BDP4** was synthesized using the same method as **BDP1**. **BDP4**, coppery, shining solid (28%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8 Hz, 4H), 7.56 (d, *J* = 4 Hz, 2H), 7.45 (d, *J* = 4 Hz, 2H), 7.18–7.16 (m, 2H),

6.91 (s, 2H), 6.77 (d, J = 8 Hz, 4H), 3.04 (s, 12H). HR-MS(ESI): [M+H]⁺ calcd for $C_{32}H_{29}BF_2N_5S_2$ m/z=596.1920; found m/z=596.1918.

Compound **BDP5** was synthesized using the same method as **BDP1**. **BDP5**, coppery, shining solid (33%).¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 4 Hz, 2H), 8.08 (d, *J* = 4 Hz, 4H), 7.75 (d, *J* = 4 Hz, 4H), 7.72 (d, *J* = 4 Hz, 2H), 7.31 (d, *J* = 4 Hz, 2H), 7.08 (s, 2H). HR-MS(ESI): [M+H]⁺ calcd for C₃₀H₁₇BF₂N₅S₂ m/z=560.0981; found m/z=560.0970.

I.3 TD-DFT calculation

The ground state structures of compounds **BDP1-5** are optimized using the density functional theory (DFT) method with the B3LYP functional and 6-31G(d) basis set. The absorption properties were predicted by the time-dependent (TD-DFT) method with the same basis set. All the above computations were performed using Gaussian 16, Revision C.01.^[1]

Table S1. Calculated electronic excitations energies	, oscillator strengths and the related wave functions.

	State ^a	Energy[eV]	λ[nm]	f ^b	Orbitals(coefficient) ^c
BDP1	S ₁	2.07	601	0.73	H→L (98%)
BDP2	S1	1.96	634	0.63	H→L (92%)
BDP3	S ₁	1.88	662	0.56	H→L (96%)
BDP4	S ₁	1.77	700	0.46	H→L (89%), H-2→L (12%)
BDP5	S ₁	1.90	652	0.59	H→L (88%), H-2→L (12%)

^a Excited state. ^bOscillator strength. ^cMOs involved in the transitions.

I.4 Spectroscopic measurements

Dyes	$\lambda_{abs}{}^{a}$	$\lambda_{em}{}^{b}$	Δvc	3	${oldsymbol{\Phi}}_{F}^{d}$	Tf ^e	Kr ^f	K _{nr} g
	[nm]	[nm]	[cm ⁻¹]	[M ⁻¹ cm ⁻¹]		[ns]	[10 ⁸ s ⁻¹]	[10 ⁸ s ⁻¹]
BDP1	717	741	452	71700	0.24	3.56	0.67	2.13
BDP2	741	763	389	75100	0.11	2.79	0.39	3.19
BDP3	746	768	384	49700	0.09	2.07	0.43	4.40
BDP4	663, 786	737(LE) ^h	1514	30500	0.01	2.81	0.04	3.52
BDP5	732	762	538	64000	0.15	3.32	0.45	2.56

Table S2. Summarized spectroscopic properties of BDP1-5 in THF at 298K.

^aAbsorption maximum in THF. ^bFluorescence maximum in THF. ^cStokes shift. ^dFluorescence quantum yield, the standard errors are less than 5%. ^eFluorescence lifetime. ^fRadiative rate constants were calculated k_r = $\Phi_{F/T}$. ^gNonradiative rate constants were calculated k_{nr}= (1 - $\Phi_{F})/T$. ^hLocal excited state.

Figure S2. Comparison of the photostability of **BDP1-5** (5×10^{-5} M) and ICG (1×10^{-5} M) in DCM under continuous irradiation with a 100 W Xe lamp over 30 min; 25 mW/cm².

I.5 Preparation of nanoparticle

2 mg of **BDP** were dissolved in tetrahydrofuran (THF, 2 mL). 2 mg of DSPE-mPEG2000 were dissolved in 4 mL of ultrapure water, and sonicate for dissolution. Take 500 µL of **BDP** in THF and quickly inject it into the aqueous solution of DSPE-mPEG2000. The THF was removed by blowing nitrogen gas under a constant temperature water bath at 50° C to obtain water-soluble nanoparticles. Add the aqueous solution into an ultrafiltration centrifuge tube, perform ultrafiltration for 5 minutes under the action of a centrifuge at 3500 r/min, repeat centrifugation with ultrapure water three times to remove excess DSPE-mPEG2000, and store in a refrigerator at 4 °C.

Figure S3. Comparison of absorption of BDP1-5 in THF and BDP1-5 NPs in water.

Figure S4. Structure of dye A (left). Comparison of absorption of A in THF and A-NPs in water (right).

Figure S5. Plot of α_{agg} of **BDP2** (10 μ M) in DMF/water (3/2) as a function of temperature for the data collected at 833 nm, and the corresponding fitting curves with the nucleation-elongation model.^[2]

Figure S6. (a) SEM image of BDP2 in DMF/water (3/2). (b-c) Absorption spectra of BDP2-NPs in 9% NaCl(b) or fetal blood serum (c) for different times.

I.6 PTT properties of dyes

Photothermal Conversion Efficiency of BDP1-2-NPs

BDP1-2-NPs in water were irradiation by 808 nm laser for 15 min and then cooled to room temperature, and the temperature of samples were recorded by an infrared camera, relatively. At the same time, pure DMF or water were used as the negative control group.

The photothermal conversion efficiencies (η) was measured and calculated according to these equations (1-4):

$$\eta = \frac{hS(T_{max} - T_{SUTT}) - Q_S}{I(1 - 10^{-A})}$$
(1)

$$\theta = \frac{\Delta T}{\Delta T_{max}} = \frac{T - T_{SUTT}}{T_{max} - T_{SUTT}}$$
(2)

$$t = -\tau ln\theta$$
(3)

$$hS = \frac{mC_p}{\tau}$$
(4)

where *h* is the heat transfer coefficient, **S** is the surface area of the container. The T_{max} and T_{surr} are the maximum temperature of the solution and the ambient temperature, respectively, *I* is the laser power, *A* is the absorbance of the sample at 808 nm and Q_s expresses the heat associated with light absorption by the solvent. *m* and C_p are the mass and heat capacity of the system, respectively, *r* is the heat transfer time constant, which can be determined by the linear relationship of *t* versus -ln θ through the natural cooling curve of the sample.

Figure S7. (a) Photothermal conversion of **BDP1-NPs** at different concentrations under 808 nm (0.96 W cm⁻²) laser irradiation. (b) Photothermal conversion of **BDP1-NPs** (30 μM) under 808 nm laser irradiation with different exposure intensities. (c) Photothermic heating curves of the **BDP1-NPs** dispersions under 808 nm irradiation (0.96 W cm⁻²) for 20 min followed by cooling to room temperature. (d) Photothermic stability of **BDP1-NPs** upon 808 nm laser irradiation of 0.96 W cm⁻² for three on/off cycles. (e) Linear correlation of the cooling times versus negative natural logarithm of driving force temperatures. (f) Infrared thermal images of **BDP1-NPs** with different concentrations upon exposure to the NIR laser (808 nm, 0-10 min) at a power density of 0.96 W cm⁻².

I.7 PDT properties of BDP1-2 NPs

For singlet oxygen detection, 1.0 mg of ABDA was accurately weighed and dissolved in sodium hydroxide (2 mg/mL, 1 mL), 10 μ L of ABDA sodium salt was added to **BDP1-2** NPs (10 μ M). The UV–vis absorption spectra of ABDA sodium salt aqueous solution in the absence and presence of **BDP1-2** were recorded every15s under 808 nm laser irradiation (0.96 W/cm²).

Figure S8. The consumption of ABDA in its mixtures with (a) **BDP1-NPs** and (b) **BDP2-NPs** under laser irradiation (808 nm, 0.96 W / cm²) at different time.

I.8 General animals culture

Animal experiments

All animal experiments were conducted in accordance with the approved agreement by the Institutional Animal Ethics Committee of China Pharmaceutical University (Approval Code: 2022-12-021). Furthermore, all laboratory animal procedures strictly adhered to the guidelines outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Male C57BL/6 mice aged 3-4 weeks were sourced from the Comparative Medicine Centre at Yangzhou University, Yangzhou, China, and housed in a SPF-class laboratory facility. Each C57BL/6 mouse was subcutaneously injected with 1×10⁶/100 µL of Hepa1-6 cells to establish the Hepa1-6 tumor-bearing mouse model.

Phototoxicity and biocompatibility

Phototoxicity and biocompatibility tests were conducted using the classical MTT assay. HepG2 and Hepa1-6 cells (1×10⁴ cells/well) were seeded into a 96-well plate with 150 μ L of DMEM per well and cultured overnight in a 37°C incubator. Subsequently, 150 μ L of DMEM containing **BDP2-NPs** at different concentrations (0, 10, 20, 30, 50, 100 μ M) was added to the wells and incubated for 2 hours. For the phototoxicity group, an 808 nm laser (0.1 W/cm²) was applied for 10 minutes, while the dark toxicity group received no laser treatment. The cells were then incubated for an additional 24 hours. Afterwards, the cells were washed three times with PBS and treated with 150 μ L of MTT solution (0.5 mg/mL) for 4 hours. The MTT solution was carefully discarded in a lightproof environment, and 200 μ L of DMSO was added to each well. The plate was shaken for 3 minutes, and the optical density (OD) was measured at a wavelength of 490 nm using a microplate reader.

Fluorescence microscopy apoptosis cell Imaging

Photodynamic-induced apoptosis was evaluated using the Calcein AM/PI apoptosis assay. Hepa1-6 cells (2×10^4 cells/well) were seeded into a 24-well plate and treated with **BDP2-NPs** at a concentration of 20 µM. Subsequently, the cells were continuously irradiated with an 808 nm laser (0.2 W/cm^2) for 0, 2, 4, 8 minutes. After a 4-hour incubation, the cells were washed three times with PBS. Calcein AM (5μ M) and PI (10μ M) were added to the wells, followed by an incubation at 37°C for 30 minutes. Subsequently, the cells were imaged using a fluorescence microscope. Calcein AM fluorescence was excited at 475/30 nm and collected at 530/40 nm, while PI fluorescence was excited at 540 nm and collected at 605/55 nm.

Detection of cell apoptosis by flow cytometry

Hepa1-6 cells (2×10⁵/well) were seeded into 6-well plate and added **BDP2-NPs** of 20 µM. After 2h, continuously irradiated with 808nm laser (0.1 W/cm²) for 0, 2, 4, 8 minutes. 4h later, Annexin V-FITC/PI Apoptosis Detection Kit was used to evaluate cell apoptosis.

PA imaging in vivo

For PA imaging of tumor in *vivo*, Hepa1-6 tumor-bearing C57BL/6 mice (n=3 for each group) were administered **BDP2-NPs** (100μM, 100μL) via tail vein. The imaging was performed at 0, 6, 12, 36, and 60 hours post-administration. Additional acquisition parameters are as follows: Frequency: 21MHz, PA Gain: 45dB, B-Mode Gain: 18dB, Persistence: 6, Acquisition Wavelength: 820 nm.

Statistical analysis

The results are shown as mean \pm standard deviation (SD) unless stated otherwise. For all tests, P < 0.05 was considered statistically significant.

Figure S9. Photothermal-induced apoptosis was detected by flow cytometry.

Figure S10. Changes of photoacoustic intensity at tumor site in mice (n=3) after injection of BDP2-NPs (100 µM, 100 µL)

Figure S11. Tumor tissue images of tumor-bearing mice after 15 days of different treatments .

Figure S12. Body weight changes of tumor-bearing mice during different treatments (n=3).

Figure S13. (a) Investigation of ALT, AST, CREA, and BUN in the blood of different groups of mice in overall biocompatibility evaluation (n=3) (b) H&E staining (20x) of mice heart, liver, spleen, lung and kidney in different groups in the overall biocompatibility evaluation

II. ¹H, ¹³C NMR spectra and HRMS-ESI

-1.56 -1.25 -0.01

BDP3 ¹H NMR (400MHz, CDCl₃)

III Cartesian coordinates

DFT optimized S0 state geometry of BDP1.

Center	Atomic	Ato	mic C	Coordinates	(Angstroms)
Num	ber Nu	mber	Туре	X Y	′ Z
 			4 707040		
1	16	0	-4.797643	-2.574519	-0.583924
2	16	0	4.763479	-2.639254	-0.548234
3	1	0	1.61/040	-3.685012	0.930592
4	1	0	-1.666794	-3.665913	0.895086
5	9	0	-0.028733	-2.418207	1.345194
6	9	0	-0.000933	-2.533111	-0.944532
7	7	0	0.010865	1.305212	0.104413
8	7	0	1.247788	-0.750938	0.136570
9	7	0	-1.254102	-0.734309	0.103878
10	6	0	-4.758974	-4.266597	-0.242371
11	1	0	-5.617398	-4.882107	-0.473298
12	6	0	-3.560953	-4.649959	0.303468
13	1	0	-3.338432	-5.670456	0.592265
14	6	0	-3.155797	-2.362860	0.023332
15	6	0	-2.584141	-1.037576	0.032895
16	6	0	-3.331083	0.167660	-0.043871
17	1	0	-4.408029	0.215186	-0.114029
18	6	0	-2.453226	1.240532	-0.021398
19	6	0	-1.139710	0.654866	0.069291
20	6	0	-2.796959	2.665302	-0.061889
21	6	0	-4.062245	3.090016	0.388234
22	1	0	-4.753096	2.362918	0.803593
23	6	0	-4.426640	4.432017	0.337804
24	1	0	-5.405209	4.737530	0.696445
25	6	0	-3.534631	5.382665	-0.163495
26	1	0	-3.818391	6.430205	-0.203713
27	6	0	-2.275993	4.976823	-0.610558
28	1	0	-1.577245	5.708375	-1.005872
29	6	0	-1.906611	3.634479	-0.563008
30	1	0	-0.930081	3.326294	-0.914249
31	6	0	4.699595	-4.331246	-0.209442
32	1	0	5.548453	-4.959369	-0.441725
33	6	0	3.496214	-4.697402	0.336611
34	1	0	3.258767	-5.714907	0.624086

36 6 0 2.574450 -1.070845 0.07454 37 6 0 3.339345 0.124753 0.03816 38 1 0 4.419101 0.158274 0.04236 39 6 0 2.475467 1.208476 0.09336 40 6 0 1.153011 0.639400 0.1400766 41 6 0 2.833694 2.629159 0.096136 42 6 0 2.005625 3.604499 0.684336 43 1 0 1.068476 3.303034 1.135236 44 6 0 2.386027 4.944569 0.691366 45 1 0 1.736414 5.681472 1.1546366 46 6 0 3.595417 5.340976 0.117666666 47 1 0 3.888799 6.386582 $0.1269366666666666666666666666666666666666$	35	6	0	3.126245	-2.404256	0.061091
3760 3.339345 0.124753 0.03810 38 10 4.419101 0.158274 0.04233 39 60 2.475467 1.208476 0.09333 40 60 1.153011 0.639400 0.14007 41 60 2.833694 2.629159 0.09613 42 60 2.005625 3.604499 0.68433 43 10 1.068476 3.303034 1.13523 44 60 2.386027 4.944569 0.69133 45 10 1.736414 5.681472 1.154633 46 60 3.595417 5.340976 0.11766333 47 10 3.888799 6.386582 0.1269333 48 60 4.425894 4.383798 -0.4699333 49 10 5.365031 4.682628 -0.926223 50 60 4.049540 3.044225 $-0.4809333333333333333333333333333333333333$	36	6	0	2.574450	-1.070845	0.074580
3810 4.419101 0.158274 0.04234 39 60 2.475467 1.208476 0.09334 40 60 1.153011 0.639400 0.14007 41 60 2.833694 2.629159 0.096134 42 60 2.005625 3.604499 0.684334 43 10 1.068476 3.303034 1.135234 44 60 2.386027 4.944569 0.691344 45 10 1.736414 5.681472 1.154624 46 60 3.595417 5.340976 0.11766447 47 10 3.888799 6.386582 0.12693446 48 60 4.425894 4.383798 -0.46993446 49 10 5.365031 4.682628 -0.9262245622 50 60 4.049540 3.044225 -0.48093466622 51 10 $4.6893366623666666666666666666666666666666$	37	6	0	3.339345	0.124753	0.038101
39 6 0 2.475467 1.208476 0.09334 40 6 0 1.153011 0.639400 0.14007 41 6 0 2.833694 2.629159 0.09613 42 6 0 2.005625 3.604499 0.68433 43 1 0 1.068476 3.303034 1.13523 44 6 0 2.386027 4.944569 0.69133 45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.11760 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 </td <td>38</td> <td>1</td> <td>0</td> <td>4.419101</td> <td>0.158274</td> <td>0.042385</td>	38	1	0	4.419101	0.158274	0.042385
40 6 0 1.153011 0.639400 0.1400 41 6 0 2.833694 2.629159 0.09613 42 6 0 2.005625 3.604499 0.68433 43 1 0 1.068476 3.303034 1.13523 44 6 0 2.386027 4.944569 0.69133 45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.117663 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.609999 -3.608946 0.49144 54 6<	39	6	0	2.475467	1.208476	0.093385
41 6 0 2.833694 2.629159 0.09613 42 6 0 2.005625 3.604499 0.68433 43 1 0 1.068476 3.303034 1.13523 44 6 0 2.386027 4.944569 0.69133 45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.117663 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	40	6	0	1.153011	0.639400	0.140014
42 6 0 2.005625 3.604499 0.68433 43 1 0 1.068476 3.303034 1.13523 44 6 0 2.386027 4.944569 0.69133 45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.11766 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	41	6	0	2.833694	2.629159	0.096133
43 1 0 1.068476 3.303034 1.13523 44 6 0 2.386027 4.944569 0.69133 45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.11766 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	42	6	0	2.005625	3.604499	0.684377
44 6 0 2.386027 4.944569 0.69134 45 1 0 1.736414 5.681472 1.15462 46 6 0 3.595417 5.340976 0.11766 47 1 0 3.888799 6.386582 0.12692 48 6 0 4.425894 4.383798 -0.46992 49 1 0 5.365031 4.682628 -0.92622 50 6 0 4.049540 3.044225 -0.48092 51 1 0 4.689336 2.311029 -0.96222 52 5 0 -0.009394 -1.688114 0.14462 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	43	1	0	1.068476	3.303034	1.135231
45 1 0 1.736414 5.681472 1.15463 46 6 0 3.595417 5.340976 0.11766 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	44	6	0	2.386027	4.944569	0.691354
46 6 0 3.595417 5.340976 0.11760 47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	45	1	0	1.736414	5.681472	1.154629
47 1 0 3.888799 6.386582 0.12693 48 6 0 4.425894 4.383798 -0.46993 49 1 0 5.365031 4.682628 -0.92623 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	46	6	0	3.595417	5.340976	0.117608
48 6 0 4.425894 4.383798 -0.46992 49 1 0 5.365031 4.682628 -0.92622 50 6 0 4.049540 3.044225 -0.48092 51 1 0 4.689336 2.311029 -0.96222 52 5 0 -0.009394 -1.688114 0.14462 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.4557	47	1	0	3.888799	6.386582	0.126939
49 1 0 5.365031 4.682628 -0.9262 50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.45574	48	6	0	4.425894	4.383798	-0.469929
50 6 0 4.049540 3.044225 -0.48093 51 1 0 4.689336 2.311029 -0.96223 52 5 0 -0.009394 -1.688114 0.14463 53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.45574	49	1	0	5.365031	4.682628	-0.926279
51 1 0 4.689336 2.311029 -0.96229 52 5 0 -0.009394 -1.688114 0.14469 53 6 0 2.600999 -3.608946 0.49149 54 6 0 -2.649225 -3.574981 0.45579	50	6	0	4.049540	3.044225	-0.480933
52 5 0 -0.009394 -1.688114 0.1446 53 6 0 2.600999 -3.608946 0.4914 54 6 0 -2.649225 -3.574981 0.4557	51	1	0	4.689336	2.311029	-0.962255
53 6 0 2.600999 -3.608946 0.49144 54 6 0 -2.649225 -3.574981 0.45574	52	5	0	-0.009394	-1.688114	0.144627
54 6 0 -2.649225 -3.574981 0.4557	53	6	0	2.600999	-3.608946	0.491468
	54	6	0	-2.649225	-3.574981	0.455745

SCF done: -2263.198411 Hartree No imaginary Frequency.

DFT optimized S0 state geometry of **BDP2**.

Center Number	Atom Nur	nic At mber	omic Type	Coordinates X Y	(Angstroms) Z	
1	16	0	4.560592	-3.001807	-0.477290	
2	16	0	0.122902	5.413046	-0.707345	
3	1	0	2.491926	3.172131	0.887718	
4	1	0	3.992670	0.253837	1.024709	
5	9	0	2.118476	1.140048	1.367941	
6	9	0	2.271271	1.162676	-0.919254	
7	7	0	-1.156599	-0.612056	0.092964	
8	7	0	0.081709	1.445993	0.096206	
9	7	0	1.241146	-0.761858	0.144392	

10	6	0	6.021834	-2.169057	-0.085017	
11	1	0	6.977100	-2.629517	-0.295974	
12	6	0	5.775160	-0.939575	0.469081	
13	1	0	6.559216	-0.262563	0.787317	
14	6	0	3.578814	-1.665277	0.120594	
15	6	0	2.140399	-1.792472	0.094032	
16	6	0	1.439993	-3.017493	-0.000258	
17	1	0	1.907465	-3.989546	-0.053036	
18	6	0	0.075038	-2.749506	-0.005369	
19	6	0	-0.035637	-1.315358	0.087774	
20	6	0	1.643421	6.158975	-0.368931	
21	1	0	1.806468	7.194226	-0.634860	
22	6	0	2.519825	5.285308	0.221306	
23	1	0	3.525958	5.560208	0.515416	
24	6	0	0.669459	3.878072	-0.035638	
25	6	0	-0.254789	2.769057	0.003377	
26	6	0	-1.663764	2.889695	-0.035566	
27	1	0	-2.199842	3.827055	-0.049599	
28	6	0	-2.219485	1.617032	0.044538	
29	6	0	-1.100666	0.710674	0.106043	
30	5	0	1.498454	0.782530	0.157464	
31	6	0	1.972550	3.990963	0.411827	
32	6	0	4.392067	-0.649393	0.587276	
33	6	0	-0.985810	-3.724835	-0.091438	
34	6	0	-3.116695	-4.981036	-0.429386	
35	6	0	-2.065270	-5.807323	-0.124603	
36	1	0	-4.145491	-5.254673	-0.619673	
37	1	0	-2.153356	-6.883761	-0.035655	
38	6	0	-3.628425	1.303304	0.074860	
39	6	0	-5.893434	0.318314	0.440277	
40	6	0	-5.950825	1.578614	-0.098301	
41	1	0	-6.715961	-0.337210	0.691537	
42	1	0	-6.877318	2.084414	-0.343621	
43	6	0	-0.855122	-5.094471	0.064058	
44	6	0	-4.665177	2.139662	-0.301452	
45	1	0	-4.496761	3.121486	-0.728321	
46	1	0	0.085702	-5.566312	0.322258	
47	16	0	-2.647172	-3.317789	-0.477903	
48	16	0	-4.266467	-0.208121	0.692340	

SCF done: -2904.704136 Hartree No imaginary Frequency.

DFT optimized S0 state geometry of **BDP3**.

Center	Atomic	At	tomic	Coordinates	(Angstroms)
Number	Numb	er	Туре	X Y	Z
1		0	-4.129698	4.737752	-0.266333
2	16	0	-3.955426	-4.750843	-0.909144
3	1	0	-5.052412	-1.756180	0.825568
4	1	0	-5.075982	1.514604	1.110541
5	9	0	-3.798293	-0.133848	1.372355
6	9	0	-3.960448	0.015864	-0.909454
7	7	0	-0.093522	0.013561	0.080629
8	7	0	-2.126205	-1.265729	0.037704
9	7	0	-2.167377	1.222441	0.196583
10	6	0	-5.806396	4.633755	0.133048
11	1	0	-6.454220	5.482142	-0.039088
12	6	0	-6.135202	3.402637	0.639168
13	1	0	-7.137762	3.137362	0.953449
14	6	0	-3.849556	3.079418	0.261632
15	6	0	-2.507972	2.548647	0.205030
16	6	0	-1.332429	3.331621	0.139444
17	1	0	-1.313993	4.411315	0.135517
18	6	0	-0.234160	2.478806	0.093664
19	6	0	-0.779373	1.145081	0.130696
20	6	0	-5.646585	-4.746940	-0.560296
21	1	0	-6.260023	-5.585410	-0.859836
22	6	0	-6.032349	-3.599252	0.083256
23	1	0	-7.052710	-3.405153	0.392229
24	6	0	-3.748124	-3.165021	-0.168638
25	6	0	-2.423441	-2.593530	-0.112345
26	6	0	-1.220792	-3.333530	-0.192424
27	1	0	-1.165660	-4.410135	-0.255642
28	6	0	-0.150914	-2.451352	-0.080734
29	6	0	-0.740212	-1.142027	0.043887
30	5	0	-3.092962	-0.040045	0.160152
31	6	0	-4.959915	-2.699110	0.306958

32	6	0	-5.029572	2.518058	0.713539
33	6	0	1.150881	2.872988	0.018330
34	6	0	3.612254	3.040630	-0.293010
35	6	0	3.054355	4.253815	0.014859
36	1	0	3.624152	5.168764	0.113646
37	6	0	1.247279	-2.805290	-0.075785
38	6	0	3.708685	-2.955043	0.247474
39	6	0	3.196062	-4.099917	-0.304724
40	1	0	3.798826	-4.958331	-0.571872
41	6	0	1.652042	4.152205	0.188123
42	6	0	1.793179	-4.010233	-0.482253
43	1	0	1.196541	-4.805541	-0.913467
44	1	0	1.024205	4.997311	0.444890
45	16	0	2.449647	1.754604	-0.365923
46	16	0	2.501843	-1.745261	0.544917
47	35	0	5.432979	2.683759	-0.605271
48	35	0	5.512847	-2.609448	0.655074

SCF done: -8046.899982 Hartree No imaginary Frequency.

DFT optimized S0 state geometry of **BDP4**.

Center	Atom	nic	Atomic	Coordinate	s (Angstroms)	
Number	Nun	nber	Туре	X Y	Z	
	16	0	-3 762300	4 767457	-0 495901	
2	16	0	-3.735034	-4.757095	-0.696106	
3	1	0	-4.796843	-1.677786	0.904472	
4	1	0	-4.797936	1.615399	0.974745	
5	9	0	-3.544965	-0.028079	1.357433	
6	9	0	-3.666152	-0.001864	-0.931613	
7	7	0	0.178180	-0.004703	0.118151	
8	7	0	-1.867694	-1.257936	0.115137	
9	7	0	-1.873048	1.240030	0.140516	
10	6	0	-5.451487	4.707949	-0.135643	
11	1	0	-6.079663	5.560203	-0.354889	

12	6	0	-5.813048	3.502506	0.406668
13	1	0	-6.827613	3.264713	0.704652
14	6	0	-3.523916	3.125679	0.101363
15	6	0	-2.189076	2.570684	0.096896
16	6	0	-0.998005	3.330340	0.030153
17	1	0	-0.966242	4.408999	-0.017660
18	6	0	0.090746	2.463385	0.028105
19	6	0	-0.482938	1.141082	0.099719
20	6	0	1.502752	2.822893	-0.021561
21	6	0	1.921765	4.119563	0.337534
22	1	0	1.189494	4.838034	0.693141
23	6	0	3.250067	4.508624	0.279500
24	1	0	3.508076	5.518121	0.574238
25	6	0	4.255126	3.606880	-0.146598
26	6	0	3.837646	2.306382	-0.517379
27	1	0	4.558544	1.581216	-0.874032
28	6	0	2.504830	1.929958	-0.451941
29	1	0	2.225054	0.927041	-0.748753
30	6	0	-5.429069	-4.717439	-0.355604
31	1	0	-6.052399	-5.559802	-0.621833
32	6	0	-5.800655	-3.538802	0.236849
33	1	0	-6.819619	-3.317135	0.532260
34	6	0	-3.509030	-3.145018	-0.020390
35	6	0	-2.176167	-2.587545	0.019044
36	6	0	-0.980612	-3.342247	-0.020780
37	1	0	-0.943048	-4.421716	-0.036074
38	6	0	0.102542	-2.472133	0.067608
39	6	0	-0.478404	-1.153563	0.132802
40	6	0	1.516964	-2.820688	0.087339
41	6	0	2.502307	-1.975929	0.636549
42	1	0	2.206217	-1.021416	1.053662
43	6	0	3.839795	-2.340266	0.668356
44	1	0	4.547845	-1.656887	1.120386
45	6	0	4.277671	-3.579486	0.142992
46	6	0	3.288575	-4.434593	-0.400860
47	1	0	3.563094	-5.396738	-0.814862
48	6	0	1.955606	-4.058022	-0.424278
49	1	0	1.234672	-4.734903	-0.872810
50	5	0	-2.813960	-0.011628	0.153938
51	6	0	-4.715953	-2.644191	0.428505

52	6	0	-4.724331	2.602584	0.542599	
53	7	0	5.586652	3.980353	-0.192038	
54	7	0	5.613825	-3.938706	0.154277	
55	6	0	5.954992	5.368596	0.029413	
56	1	0	7.039609	5.465357	-0.031545	
57	1	0	5.507973	6.048617	-0.711011	
58	1	0	5.648548	5.706551	1.026334	
59	6	0	6.569034	3.079067	-0.769356	
60	1	0	7.559423	3.528345	-0.686302	
61	1	0	6.592603	2.123573	-0.232420	
62	1	0	6.377052	2.865197	-1.831536	
63	6	0	6.003261	-5.283586	-0.235231	
64	1	0	7.088740	-5.372621	-0.178140	
65	1	0	5.561439	-6.056531	0.411163	
66	1	0	5.707901	-5.498631	-1.268877	
67	6	0	6.579349	-3.103834	0.848156	
68	1	0	7.576546	-3.526073	0.718077	
69	1	0	6.593095	-2.088446	0.435105	
70	1	0	6.377198	-3.027082	1.927075	

SCF done: -2531.150521 Hartree No imaginary Frequency.

DFT optimized S0 state geometry of **BDP5**.

Center Number	Atomi Num	c At ber	tomic Type	Coordinates X Y	(Angstroms) Z	
1	16	0	-3.219295	4.792746	-0.542111	
2	16	0	-3.228412	-4.781234	-0.573950	
3	1	0	-4.304563	-1.641121	0.899513	
4	1	0	-4.304490	1.634660	0.885750	
5	9	0	-3.042647	0.005376	1.339212	
6	9	0	-3.148954	-0.006798	-0.951358	
7	7	0	0.683446	-0.004046	0.109550	
8	7	0	-1.365306	-1.253905	0.127895	
9	7	0	-1.363048	1.249913	0.112654	

10	6	0	-4.911918	4.738892	-0.211993
11	1	0	-5.530717	5.597182	-0.434664
12	6	0	-5.293222	3.530824	0.314534
13	1	0	-6.314295	3.299873	0.593972
14	6	0	-3.002649	3.142917	0.041643
15	6	0	-1.676237	2.578375	0.050120
16	6	0	-0.473586	3.333412	-0.017757
17	1	0	-0.432154	4.410999	-0.081728
18	6	0	0.601932	2.460511	0.001227
19	6	0	0.025045	1.142632	0.080455
20	6	0	2.023836	2.811899	-0.035296
21	6	0	2.442225	4.074972	0.428729
22	1	0	1.713694	4.758166	0.852370
23	6	0	3.776419	4.452333	0.382556
24	1	0	4.085104	5.425419	0.748844
25	6	0	4.737619	3.566296	-0.133330
26	6	0	4.335606	2.302175	-0.596024
27	1	0	5.076147	1.619803	-0.999294
28	6	0	2.997733	1.932022	-0.547523
29	1	0	2.695223	0.957894	-0.909240
30	6	0	-4.921475	-4.727007	-0.245077
31	1	0	-5.542812	-5.579881	-0.481043
32	6	0	-5.299520	-3.525701	0.299086
33	1	0	-6.320181	-3.295924	0.581010
34	6	0	-3.007586	-3.141926	0.035433
35	6	0	-1.679649	-2.581709	0.055398
36	6	0	-0.477944	-3.339764	0.014441
37	1	0	-0.438117	-4.419320	0.010241
38	6	0	0.598242	-2.468991	0.079593
39	6	0	0.022684	-1.149948	0.135865
40	6	0	2.020026	-2.818329	0.085731
41	6	0	2.987379	-1.990412	0.688891
42	1	0	2.678747	-1.059795	1.147562
43	6	0	4.327039	-2.356817	0.704938
44	1	0	5.062857	-1.715664	1.178363
45	6	0	4.736591	-3.566132	0.118618
46	6	0	3.781654	-4.400268	-0.487880
47	1	0	4.096731	-5.330183	-0.948665
48	6	0	2.445794	-4.026339	-0.501510
49	1	0	1.721241	-4.666280	-0.994062

50	5	0	-2.311701	-0.001348	0.141801	
51	6	0	-4.218769	-2.623798	0.459505	
52	6	0	-4.215325	2.623059	0.459809	
53	6	0	6.116886	3.951132	-0.184644	
54	6	0	6.117462	-3.948130	0.137146	
55	7	0	7.236209	4.266313	-0.225187	
56	7	0	7.238137	-4.260786	0.151124	

SCF done: -2447.681046Hartree

No imaginary Frequency.

IV. References

Brinsch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, 2016.
P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning, E. W. Meijer, *Science* 2006, 313, 80-83. [1]

[2]