Rational Design of CT-coupled J-Aggregation Platform based on Aza-BODIPY for Highly Efficient Phototherapy
 Zijian Guo ${ }^{\text {c }}$ and Hua Lu*a
Table of Contents
I. Experimental Section
I. 1 Methods and materials S2
I. 2 Synthesis S3-S5
I. 3 TD-DFT calculations S6
I. 4 Spectroscopic measurements S7
I. 5 Preparation of nanoparticle S8-S10
I. 6 PTT properties of dyes S11
I. 7 PDT properties of BDP1-2 NPs S12
1.8 General animals culture S13-S15
II. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra and HR-MS S16-S30
III. Cartesian coordinates S31-S39
IV. References S40

Experimental Procedures

I. 1 Methods and materials

All reactions were carried out under a dry argon atmosphere by using Schlenk techniques. All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air- and moisture-sensitive reactions were carried out under a nitrogen atmosphere. Glassware was dried in an oven at $100^{\circ} \mathrm{C}$ and cooled under a stream of inert gas before use. Dichloromethane was distilled over calcium hydride. All the solvents employed for the spectroscopic measurements were of spectroscopic grade. Analytical thin-layer chromatography was performed on glass plates coated with $0.25 \mathrm{~mm} 250-400$ mesh silica gel containing a fluorescent indicator (Merck). Flash column chromatography (200 mesh) was carried out using silica gel purchased from Qingdao Haiyang Silica Gel Co.
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX400 / 500 spectrometer and referenced to the residual proton signals of the solvent, reporting chemical shifts in ppm compared to SiMe ${ }_{4}$. The ${ }^{1} \mathrm{H}$ NMR coupling constants (J) are reported in $\mathrm{Hertz}(\mathrm{Hz})$ and the multiplicity is expressed as follows: s (singlet), d (doublet), m (multiplet). HRMS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. UV-visible absorption spectra and fluorescence emission spectra were recorded on a commercial spectrophotometer (Shimadzu UV-1800 and Horiba JobinYvonFluorolog-3 spectrofluorometers) at room temperature. The diameter of the nanoparticles was determined by dynamic light scattering (DLS) on a Zetasizer Nano ZSE (Malvern, UK) with a semiconductor laser (50 nW) as a light source. Confocal laser scanning microscope (CLSM) images were performed on Zeiss LSM710 confocal laser scanning microscope. The PA signals of disease areas were measured by Visualsonic Vevo 2100 LAZER system. Photothermal effects were determined using a UNI-T UT325 thermometer. Infrared (IR) thermal imaging was performed using a FLIR E53 thermal imaging camera.

I. 2 Synthesis

General synthetic method for 1a-1e

To a solution of benzaldehyde ($5.0 \mathrm{~g}, 42 \mathrm{mmol}$) and 2-acetylthiophene ($4.7 \mathrm{~g}, 42 \mathrm{mmol}$) in ethanol (50 mL) were added an aqueous solution of sodium hydroxide $(8.4 \mathrm{~g}, 210 \mathrm{mmol}, 10 \mathrm{~mL}$ water) under ice bath conditions. The mixture was stirred at room temperature for 12 h . After the reaction is complete, the products precipitated were filtered, washed with aqueous ethanol, and dried in a vacuum. 1a, white solid (93% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.2,145.6,144.2,134.8,134.1,132.0,130.7,129.1,128.6,128.4,121.7$.

1b, white solid (88% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dd, J $=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.8,143.7,138.9,134.5132 .4,129.2,128.4,128.1,127.6,79.5$.

1c, white solid (75% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}$ $=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,145.4$, 141.8, 135.6, 134.2, 132.6, 131.9, 131.5, 128.4, 120.7, 116.6.

1d, yellow solid (78% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.88$ ($\mathrm{d}, \mathrm{J}=8,4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.67(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 182.2,152.2,146.5,145.1,133.0,131.0,130.6,128.2,122.5,116.4,111.9,40.2$.

1e, white solid (91% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,145.1$, $141.5,139.1,134.8,132.8,132.4,128.9,128.6,124.8,118.5,113.7$.

General synthetic method for 2a-2e

Compound 1a ($5.0 \mathrm{~g}, 23 \mathrm{mmol}$), nitromethane ($8.8 \mathrm{~mL}, 184 \mathrm{mmol}$), and diethylamine ($18.9 \mathrm{~mL}, 184 \mathrm{mmol}$) were dissolved in ethanol (50 mL), and the mixture was refluxed for 3 hours. After cooling to room temperature, the resulting mixture was evaporated to dryness and then dissolved in ethyl acetate. The mixture was washed with water and brine, dried with sodium sulfate, and concentrated to give the crude product. Purification by column chromatography ($\mathrm{EA}: \mathrm{PE}=1: 4$) yields the desired products. $\mathbf{2 a}$, yellow oily liquid (76%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
$\delta 7.72$ (dd, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.89-4.84 (m, 1H), 4.75-4.70 (m, 1H), 4.27-4.19 (m, 1H), 3.48-3.34 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 141.5, 138.6, 129.0, 128.8, 128.5, 128.4, 128.2, 126.7, 125.9, 124.1, 122.4, 38.1, 24.7, 17.6.

The synthesis method of compound $\mathbf{2 b}$ is the same as that of $\mathbf{2 a}$. $\mathbf{2 b}$, yellow oily liquid $(72 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}$, $2 \mathrm{H}), 4.86(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.4,143.5,141.6,134.7,132.6,128.5,127.3,125.8,124.9,79.8,42.9,35.0$.

The synthesis method of compound $\mathbf{2 c}$ is the same as that of $\mathbf{2 a}$. $\mathbf{2 c}$, yellow oily liquid $(62 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.92(\mathrm{~m}$, $2 \mathrm{H}), 6.72(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.49(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.0,143.2,134.9,132.6,130.1,130.0,128.5,126.4,111.6,79.4,42.5,35.3$.

Synthesis of compound 2d is the same as that of 2a. 2d, yellow oily liquid (63%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.70(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.81-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.67-$ $4.62(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 190.2,150.0$, 143.8, 134.3, 132.3, 128.3, 128.2, 126.2, 112.9, 79.9, 42.5, 40.6, 38.9.

The synthesis method of compound $\mathbf{2 e}$ is the same as that of $\mathbf{2 a}$. $\mathbf{2 e}$, yellow oily liquid $(75 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.83(\mathrm{~m}$, $1 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.9,144.3$, 143.2, 134.9, 133.0, 132.5, 128.6, 128.5, 118.4, 112.2, 78.8, 41.7, 39.4.

General synthetic method for BDP1-5.

$\mathbf{2 a}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ and ammonium acetate $(9.3 \mathrm{~g}, 126 \mathrm{mmol})$ were dissolved in n -butanol (25 mL) and refluxed the mixture for 14 hours. After cooling to room temperature, the resulting precipitate was collected, and washed with water $(50 \mathrm{~mL})$ and $\mathrm{EtOH}(60 \mathrm{~mL})$. The resulting solid was allowed to dry in the oven to obtain the products Azadipyrromethene, which were used in the next step without further purification.

To a new distilled solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, Azadipyrromethene ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added along with N , N -diisopropylethylamine $(0.5 \mathrm{~mL})$ under an ice bath. After stirring for 10 minutes, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{~mL})$ was added carefully and the mixture was allowed to stir at room temperature for 3 h . The crude mixture was diluted with dichloromethane and washed with water and brine. The organic layer was dried over magnesium sulphate and the solvent was removed under reduced pressure. Chromatography on silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded BDP1 (45\%) as a coppery, shining solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{HR}-\mathrm{MS}(E S I):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z}=510.1076$; found $\mathrm{m} / \mathrm{z}=510.1006$.
The synthesis of compound BDP2 is the same as that of BDP1. BDP2, coppery, shining solid (40\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) ס $8.35(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (s, 1H), $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H})$. HR-MS(ESI): [M] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{~S}_{4}$ $\mathrm{m} / \mathrm{z}=521.0132$; found $\mathrm{m} / \mathrm{z}=521.0173$.

The synthesis of compound BDP3 is the same as that of BDP1. BDP3, coppery, shining solid (32\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.58-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$. HR-MS(ESI): [M] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{BBr}_{2} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{~S}_{4} \mathrm{~m} / \mathrm{z}=676.8342$; found $\mathrm{m} / \mathrm{z}=676.8355$.

Compound BDP4 was synthesized using the same method as BDP1. BDP4, coppery, shining solid (28%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H})$,
$6.91(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.04(\mathrm{~s}, 12 \mathrm{H}) . \mathrm{HR}-\mathrm{MS}(\mathrm{ESI}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z}=596.1920$; found $m / z=596.1918$.

Compound BDP5 was synthesized using the same method as BDP1. BDP5, coppery, shining solid (33\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=4 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=4 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=4 \mathrm{~Hz}$, $2 H$), $7.31(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H})$. HR-MS(ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z}=560.0981$; found $\mathrm{m} / \mathrm{z}=560.0970$.

I. 3 TD-DFT calculation

The ground state structures of compounds BDP1-5 are optimized using the density functional theory (DFT) method with the B3LYP functional and $6-31 \mathrm{G}(\mathrm{d})$ basis set. The absorption properties were predicted by the time-dependent (TD-DFT) method with the same basis set. All the above computations were performed using Gaussian 16, Revision C.01. ${ }^{[1]}$

Figure S1. Calculated HOMO and LUMO energy levels of BDP1-5 at an isosurface value of 0.035 a.u.
Table S1. Calculated electronic excitations energies, oscillator strengths and the related wave functions.

	State a	Energy[eV]	$\lambda[\mathrm{nm}]$	f^{b}	Orbitals(coefficient) c
BDP1	S_{1}	2.07	601	0.73	$\mathrm{H} \rightarrow \mathrm{L}(98 \%)$
BDP2	S_{1}	1.96	634	0.63	$\mathrm{H} \rightarrow \mathrm{L}(92 \%)$
BDP3	S_{1}	1.88	662	0.56	$\mathrm{H} \rightarrow \mathrm{L}(96 \%)$
BDP4	S_{1}	1.77	700	0.46	$\mathrm{H} \rightarrow \mathrm{L}(89 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}(12 \%)$
BDP5	S_{1}	1.90	652	0.59	$\mathrm{H} \rightarrow \mathrm{L}(88 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}(12 \%)$

[^0]
I. 4 Spectroscopic measurements

Table S2. Summarized spectroscopic properties of BDP1-5 in THF at 298K.

Dyes	$\begin{aligned} & \lambda_{\text {abs }^{a}} \\ & {[\mathrm{~nm}]} \end{aligned}$	$\begin{aligned} & \lambda_{\mathrm{em}}{ }^{\mathrm{c}} \\ & {[\mathrm{~nm}]} \end{aligned}$	$\begin{gathered} \Delta \mathrm{v}^{\mathrm{c}} \\ {\left[\mathrm{~cm}^{-1}\right]} \end{gathered}$	ε $\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]$	$\Phi_{F}{ }^{\text {d }}$	$\begin{gathered} \mathrm{Tf}_{\mathrm{e}} \\ {[\mathrm{~ns}]} \end{gathered}$	$\begin{gathered} \mathrm{Kr}_{\mathrm{f}^{\mathrm{s}}}\left[10^{8} \mathrm{~s}^{-1}\right] \end{gathered}$	$\begin{gathered} \mathrm{K}_{n r^{9}} \\ {\left[10^{8} \mathrm{~s}^{-1}\right]} \end{gathered}$
BDP1	717	741	452	71700	0.24	3.56	0.67	2.13
BDP2	741	763	389	75100	0.11	2.79	0.39	3.19
BDP3	746	768	384	49700	0.09	2.07	0.43	4.40
BDP4	663, 786	737(LE) ${ }^{\text {h }}$	1514	30500	0.01	2.81	0.04	3.52
BDP5	732	762	538	64000	0.15	3.32	0.45	2.56

 the standard errors are less than 5%. ${ }^{e}$ Fluorescence lifetime. ${ }^{\text {fRadiative rate constants were calculated } \mathrm{k}_{\mathrm{r}}, ~}$ $=\Phi_{\mathrm{F}} / \mathrm{T}$. ${ }^{9}$ Nonradiative rate constants were calculated $\mathrm{knr}_{\mathrm{nr}}=\left(1-\Phi_{\mathrm{F}}\right) / \mathrm{t}$. ${ }^{\mathrm{h}}$ Local excited state.

Figure S2. Comparison of the photostability of BDP1-5 $\left(5 \times 10^{-5} \mathrm{M}\right)$ and ICG $\left(1 \times 10^{-5} \mathrm{M}\right)$ in DCM under continuous irradiation with a 100 W Xe lamp over $30 \mathrm{~min} ; 25 \mathrm{~mW} / \mathrm{cm}^{2}$.

I. 5 Preparation of nanoparticle

2 mg of BDP were dissolved in tetrahydrofuran (THF, 2 mL). 2 mg of DSPE-mPEG2000 were dissolved in 4 mL of ultrapure water, and sonicate for dissolution. Take $500 \mu \mathrm{~L}$ of BDP in THF and quickly inject it into the aqueous solution of DSPE-mPEG2000. The THF was removed by blowing nitrogen gas under a constant temperature water bath at $50^{\circ} \mathrm{C}$ to obtain water-soluble nanoparticles. Add the aqueous solution into an ultrafiltration centrifuge tube, perform ultrafiltration for 5 minutes under the action of a centrifuge at $3500 \mathrm{r} / \mathrm{min}$, repeat centrifugation with ultrapure water three times to remove excess DSPE-mPEG2000, and store in a refrigerator at $4^{\circ} \mathrm{C}$.

Figure S3. Comparison of absorption of BDP1-5 in THF and BDP1-5 NPs in water.

Figure S4. Structure of dye A (left). Comparison of absorption of A in THF and A-NPs in water (right).

Figure S5. Plot of $\alpha_{\text {agg }}$ of BDP2 $(10 \mu \mathrm{M})$ in DMF/water (3/2) as a function of temperature for the data collected at 833 nm , and the corresponding fitting curves with the nucleation-elongation model. ${ }^{[2]}$

Figure S6. (a) SEM image of BDP2 in DMF/water (3/2). (b-c) Absorption spectra of BDP2-NPs in 9\% $\mathrm{NaCl}(\mathrm{b}$) or fetal blood serum (c) for different times.

I. 6 PTT properties of dyes

Photothermal Conversion Efficiency of BDP1-2-NPs

BDP1-2-NPs in water were irradiation by 808 nm laser for 15 min and then cooled to room temperature, and the temperature of samples were recorded by an infrared camera, relatively. At the same time, pure DMF or water were used as the negative control group.
The photothermal conversion efficiencies (η) was measured and calculated according to these equations (1-4):
$\eta=\frac{h S\left(T_{\text {max }}-T_{\text {surr }}\right)-Q_{S}}{I\left(1-10^{-A}\right)}$
$\theta=\frac{\Delta T}{\Delta T_{\text {max }}}=\frac{T-T_{\text {surr }}}{T_{\text {max }}-T_{\text {surr }}}$
$\mathrm{t}=-\tau \ln \theta$

$$
\begin{equation*}
h S=\frac{m c_{\mathrm{p}}}{\tau} \tag{3}
\end{equation*}
$$

where h is the heat transfer coefficient, \mathbf{S} is the surface area of the container. The $T_{\text {max }}$ and $T_{\text {surr }}$ are the maximum temperature of the solution and the ambient temperature, respectively, I is the laser power, A is the absorbance of the sample at 808 nm and Q_{s} expresses the heat associated with light absorption by the solvent. m and C_{p} are the mass and heat capacity of the system, respectively, τ is the heat transfer time constant, which can be determined by the linear relationship of t versus $-\ln \theta$ through the natural cooling curve of the sample.

Figure S7. (a) Photothermal conversion of BDP1-NPs at different concentrations under $808 \mathrm{~nm}\left(0.96 \mathrm{~W} \mathrm{~cm}^{-2}\right)$ laser irradiation. (b) Photothermal conversion of BDP1-NPs $(30 \mu \mathrm{M})$ under 808 nm laser irradiation with different exposure intensities. (c) Photothermic heating curves of the BDP1-NPs dispersions under 808 nm irradiation ($0.96 \mathrm{~W} \mathrm{~cm}^{-2}$) for 20 min followed by cooling to room temperature. (d) Photothermic stability of BDP1-NPs upon 808 nm laser irradiation of $0.96 \mathrm{~W} \mathrm{~cm}^{-2}$ for three on/off cycles. (e) Linear correlation of the cooling times versus negative natural logarithm of driving force temperatures. (f) Infrared thermal images of BDP1-NPs with different concentrations upon exposure to the NIR laser ($808 \mathrm{~nm}, 0-10 \mathrm{~min}$) at a power density of $0.96 \mathrm{~W} \mathrm{~cm}^{-2}$.

I. 7 PDT properties of BDP1-2 NPs

For singlet oxygen detection, 1.0 mg of ABDA was accurately weighed and dissolved in sodium hydroxide ($2 \mathrm{mg} / \mathrm{mL}$, 1 mL), $10 \mu \mathrm{~L}$ of ABDA sodium salt was added to BDP1-2 NPs ($10 \mu \mathrm{M}$). The UV-vis absorption spectra of ABDA sodium salt aqueous solution in the absence and presence of BDP1-2 were recorded every 15 s under 808 nm laser irradiation ($0.96 \mathrm{~W} / \mathrm{cm}^{2}$).

Figure S8. The consumption of ABDA in its mixtures with (a) BDP1-NPs and (b) BDP2-NPs under laser irradiation (808 nm, $0.96 \mathrm{~W} / \mathrm{cm}^{2}$) at different time.

I. 8 General animals culture

Animal experiments

All animal experiments were conducted in accordance with the approved agreement by the Institutional Animal Ethics Committee of China Pharmaceutical University (Approval Code: 2022-12-021). Furthermore, all laboratory animal procedures strictly adhered to the guidelines outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Male C57BL/6 mice aged 3-4 weeks were sourced from the Comparative Medicine Centre at Yangzhou University, Yangzhou, China, and housed in a SPF-class laboratory facility. Each C57BL/6 mouse was subcutaneously injected with $1 \times 10^{6} / 100 \mu \mathrm{~L}$ of Hepa1-6 cells to establish the Hepa1-6 tumor-bearing mouse model.

Phototoxicity and biocompatibility

Phototoxicity and biocompatibility tests were conducted using the classical MTT assay. HepG2 and Hepa1-6 cells (1×10^{4} cells/well) were seeded into a 96 -well plate with $150 \mu \mathrm{~L}$ of DMEM per well and cultured overnight in a $37^{\circ} \mathrm{C}$ incubator. Subsequently, $150 \mu \mathrm{~L}$ of DMEM containing BDP2-NPs at different concentrations ($0,10,20,30$, $50,100 \mu \mathrm{M}$) was added to the wells and incubated for 2 hours. For the phototoxicity group, an 808 nm laser (0.1 $\mathrm{W} / \mathrm{cm}^{2}$) was applied for 10 minutes, while the dark toxicity group received no laser treatment. The cells were then incubated for an additional 24 hours. Afterwards, the cells were washed three times with PBS and treated with 150 $\mu \mathrm{L}$ of MTT solution $(0.5 \mathrm{mg} / \mathrm{mL})$ for 4 hours. The MTT solution was carefully discarded in a lightproof environment, and $200 \mu \mathrm{~L}$ of DMSO was added to each well. The plate was shaken for 3 minutes, and the optical density (OD) was measured at a wavelength of 490 nm using a microplate reader.

Fluorescence microscopy apoptosis cell Imaging

Photodynamic-induced apoptosis was evaluated using the Calcein AM/PI apoptosis assay. Hepa1-6 cells (2×10^{4} cells/well) were seeded into a 24-well plate and treated with BDP2-NPs at a concentration of $20 \mu \mathrm{M}$. Subsequently, the cells were continuously irradiated with an 808 nm laser ($0.2 \mathrm{~W} / \mathrm{cm}^{2}$) for $0,2,4,8$ minutes. After a 4-hour incubation, the cells were washed three times with PBS. Calcein AM $(5 \mu \mathrm{M})$ and $\mathrm{PI}(10 \mu \mathrm{M})$ were added to the wells, followed by an incubation at $37^{\circ} \mathrm{C}$ for 30 minutes. Subsequently, the cells were imaged using a fluorescence microscope. Calcein AM fluorescence was excited at $475 / 30 \mathrm{~nm}$ and collected at $530 / 40 \mathrm{~nm}$, while PI fluorescence was excited at 540 nm and collected at 605/55 nm.

Detection of cell apoptosis by flow cytometry

Hepa1-6 cells ($2 \times 10^{5} /$ well) were seeded into 6 -well plate and added BDP2-NPs of $20 \mu \mathrm{M}$. After 2 h , continuously irradiated with 808nm laser ($0.1 \mathrm{~W} / \mathrm{cm}^{2}$) for 0, 2, 4, 8 minutes. 4h later, Annexin V-FITC/PI Apoptosis Detection Kit was used to evaluate cell apoptosis.

PA imaging in vivo

For PA imaging of tumor in vivo, Hepa1-6 tumor-bearing C57BL/6 mice ($\mathrm{n}=3$ for each group) were administered BDP2-NPs $(100 \mu \mathrm{M}, 100 \mu \mathrm{~L})$ via tail vein. The imaging was performed at $0,6,12,36$, and 60 hours postadministration. Additional acquisition parameters are as follows: Frequency: 21 MHz, PA Gain: 45dB, B-Mode Gain: 18dB, Persistence: 6, Acquisition Wavelength: 820 nm.

Statistical analysis

The results are shown as mean \pm standard deviation (SD) unless stated otherwise. For all tests, $\mathrm{P}<0.05$ was considered statistically significant.

Figure S9. Photothermal-induced apoptosis was detected by flow cytometry.

Figure S10. Changes of photoacoustic intensity at tumor site in mice ($\mathrm{n}=3$) after injection of BDP2-NPs $(100 \mu \mathrm{M}, 100 \mu \mathrm{~L})$

Figure S11. Tumor tissue images of tumor-bearing mice after 15 days of different treatments .

Figure S12. Body weight changes of tumor-bearing mice during different treatments ($n=3$).

Figure S13. (a) Investigation of ALT, AST, CREA, and BUN in the blood of different groups of mice in overall biocompatibility evaluation ($\mathrm{n}=3$) (b) H\&E staining (20x) of mice heart, liver, spleen, lung and kidney in different groups in the overall biocompatibility evaluation
II. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and HRMS-ESI

1a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{N}{\underset{\sim}{\infty}}$

$\stackrel{\sim}{N} \stackrel{\infty}{\sim} \stackrel{\infty}{\circ}$

AR

1a ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

穴穴

2a ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

BDP1 ${ }^{1} \mathrm{H}$ NMR（400MHz， CDCl_{3} ）

$\stackrel{\hat{i}}{i}$

1b ${ }^{1} \mathrm{H}$ NMR（400MHz， CDCl_{3} ）

2c ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Cols

2c ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

BDP3 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1d ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1d ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\sim}{\circ}$	

2d ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

BDP4 ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right)$

1e ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-181.4


~~~
\(\stackrel{+}{N}\)


\(\mathbf{1 e}{ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



2e \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\(\stackrel{\infty}{\infty}\)

\(\infty 10 \sim \infty\)
\(\sim\)



\(\mathbf{2 e}{ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




III Cartesian coordinates
DFT optimized S0 state geometry of BDP1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic At & & \multicolumn{3}{|l|}{Coordinates (Angstroms)} \\
\hline Numb & er Number & Type & X & Y & Z \\
\hline
\end{tabular}
\begin{tabular}{cccccc}
1 & 16 & 0 & -4.797643 & -2.574519 & -0.583924 \\
2 & 16 & 0 & 4.763479 & -2.639254 & -0.548234 \\
3 & 1 & 0 & 1.617040 & -3.685012 & 0.930592 \\
4 & 1 & 0 & -1.666794 & -3.665913 & 0.895086 \\
5 & 9 & 0 & -0.028733 & -2.418207 & 1.345194 \\
6 & 9 & 0 & -0.000933 & -2.533111 & -0.944532 \\
7 & 7 & 0 & 0.010865 & 1.305212 & 0.104413 \\
8 & 7 & 0 & 1.247788 & -0.750938 & 0.136570 \\
9 & 7 & 0 & -1.254102 & -0.734309 & 0.103878 \\
10 & 6 & 0 & -4.758974 & -4.266597 & -0.242371 \\
11 & 1 & 0 & -5.617398 & -4.882107 & -0.473298 \\
12 & 6 & 0 & -3.560953 & -4.649959 & 0.303468 \\
13 & 1 & 0 & -3.338432 & -5.670456 & 0.592265 \\
14 & 6 & 0 & -3.155797 & -2.362860 & 0.023332 \\
15 & 6 & 0 & -2.584141 & -1.037576 & 0.032895 \\
16 & 6 & 0 & -3.331083 & 0.167660 & -0.043871 \\
17 & 1 & 0 & -4.408029 & 0.215186 & -0.114029 \\
18 & 6 & 0 & -2.453226 & 1.240532 & -0.021398 \\
19 & 6 & 0 & -1.139710 & 0.654866 & 0.069291 \\
20 & 6 & 0 & -2.796959 & 2.665302 & -0.061889 \\
21 & 6 & 0 & -4.062245 & 3.090016 & 0.388234 \\
22 & 1 & 0 & -4.753096 & 2.362918 & 0.803593 \\
23 & 6 & 0 & -4.426640 & 4.432017 & 0.337804 \\
24 & 1 & 0 & -5.405209 & 4.737530 & 0.696445 \\
25 & 6 & 0 & -3.534631 & 5.382665 & -0.163495 \\
26 & 1 & 0 & -3.818391 & 6.430205 & -0.203713 \\
27 & 6 & 0 & -2.275993 & 4.976823 & -0.610558 \\
28 & 1 & 0 & -1.577245 & 5.708375 & -1.005872 \\
29 & 6 & 0 & -1.906611 & 3.634479 & -0.563008 \\
30 & 1 & 0 & -0.930081 & 3.326294 & -0.914249 \\
31 & 6 & 0 & 4.699595 & -4.331246 & -0.209442 \\
32 & 1 & 0 & 5.548453 & -4.959369 & -0.441725 \\
33 & 6 & 0 & 3.496214 & -4.697402 & 0.336611 \\
34 & 1 & 0 & 3.258767 & -5.714907 & 0.624086 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
35 & 6 & 0 & 3.126245 & -2.404256 & 0.061091 \\
36 & 6 & 0 & 2.574450 & -1.070845 & 0.074580 \\
37 & 6 & 0 & 3.339345 & 0.124753 & 0.038101 \\
38 & 1 & 0 & 4.419101 & 0.158274 & 0.042385 \\
39 & 6 & 0 & 2.475467 & 1.208476 & 0.093385 \\
40 & 6 & 0 & 1.153011 & 0.639400 & 0.140014 \\
41 & 6 & 0 & 2.833694 & 2.629159 & 0.096133 \\
42 & 6 & 0 & 2.005625 & 3.604499 & 0.684377 \\
43 & 1 & 0 & 1.068476 & 3.303034 & 1.135231 \\
44 & 6 & 0 & 2.386027 & 4.944569 & 0.691354 \\
45 & 1 & 0 & 1.736414 & 5.681472 & 1.154629 \\
46 & 6 & 0 & 3.595417 & 5.340976 & 0.117608 \\
47 & 1 & 0 & 3.888799 & 6.386582 & 0.126939 \\
48 & 6 & 0 & 4.425894 & 4.383798 & -0.469929 \\
49 & 1 & 0 & 5.365031 & 4.682628 & -0.926279 \\
50 & 6 & 0 & 4.049540 & 3.044225 & -0.480933 \\
51 & 1 & 0 & 4.689336 & 2.311029 & -0.962255 \\
52 & 5 & 0 & -0.009394 & -1.688114 & 0.144627 \\
53 & 6 & 0 & 2.600999 & -3.608946 & 0.491468 \\
54 & 6 & 0 & -2.649225 & -3.574981 & 0.455745
\end{tabular}

SCF done: -2263.198411 Hartree No imaginary Frequency.

DFT optimized S0 state geometry of BDP2.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & X Y & Z \\
\hline 1 & 16 & 04.560592 & -3.001807 & -0.477290 \\
\hline 2 & 16 & 00.122902 & 5.413046 & -0.707345 \\
\hline 3 & 1 & 2.491926 & 3.172131 & 0.887718 \\
\hline 4 & 1 & 3.992670 & 0.253837 & 1.024709 \\
\hline 5 & 9 & 2.118476 & 1.140048 & 1.367941 \\
\hline 6 & 9 & 2.271271 & 1.162676 & -0.919254 \\
\hline 7 & 7 & -1.156599 & -0.612056 & 0.092964 \\
\hline 8 & 7 & 0.081709 & 1.445993 & 0.096206 \\
\hline 9 & 7 & 1.241146 & -0.761858 & 0.144392 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
10 & 6 & 0 & 6.021834 & -2.169057 & -0.085017 \\
11 & 1 & 0 & 6.977100 & -2.629517 & -0.295974 \\
12 & 6 & 0 & 5.775160 & -0.939575 & 0.469081 \\
13 & 1 & 0 & 6.559216 & -0.262563 & 0.787317 \\
14 & 6 & 0 & 3.578814 & -1.665277 & 0.120594 \\
15 & 6 & 0 & 2.140399 & -1.792472 & 0.094032 \\
16 & 6 & 0 & 1.439993 & -3.017493 & -0.000258 \\
17 & 1 & 0 & 1.907465 & -3.989546 & -0.053036 \\
18 & 6 & 0 & 0.075038 & -2.749506 & -0.005369 \\
19 & 6 & 0 & -0.035637 & -1.315358 & 0.087774 \\
20 & 6 & 0 & 1.643421 & 6.158975 & -0.368931 \\
21 & 1 & 0 & 1.806468 & 7.194226 & -0.634860 \\
22 & 6 & 0 & 2.519825 & 5.285308 & 0.221306 \\
23 & 1 & 0 & 3.525958 & 5.560208 & 0.515416 \\
24 & 6 & 0 & 0.669459 & 3.878072 & -0.035638 \\
25 & 6 & 0 & -0.254789 & 2.769057 & 0.003377 \\
26 & 6 & 0 & -1.663764 & 2.889695 & -0.035566 \\
27 & 1 & 0 & -2.199842 & 3.827055 & -0.049599 \\
28 & 6 & 0 & -2.219485 & 1.617032 & 0.044538 \\
29 & 6 & 0 & -1.100666 & 0.710674 & 0.106043 \\
30 & 5 & 0 & 1.498454 & 0.782530 & 0.157464 \\
31 & 6 & 0 & 1.972550 & 3.990963 & 0.411827 \\
32 & 6 & 0 & 4.392067 & -0.649393 & 0.587276 \\
33 & 6 & 0 & -0.985810 & -3.724835 & -0.091438 \\
34 & 6 & 0 & -3.116695 & -4.981036 & -0.429386 \\
35 & 6 & 0 & -2.065270 & -5.807323 & -0.124603 \\
36 & 1 & 0 & -4.145491 & -5.254673 & -0.619673 \\
37 & 1 & 0 & -2.153356 & -6.883761 & -0.035655 \\
38 & 6 & 0 & -3.628425 & 1.303304 & 0.074860 \\
39 & 6 & 0 & -5.893434 & 0.318314 & 0.440277 \\
40 & 6 & 0 & -5.950825 & 1.578614 & -0.098301 \\
41 & 1 & 0 & -6.715961 & -0.337210 & 0.691537 \\
42 & 1 & 0 & -6.877318 & 2.084414 & -0.343621 \\
43 & 6 & 0 & -0.855122 & -5.094471 & 0.064058 \\
44 & 6 & 0 & -4.665177 & 2.139662 & -0.301452 \\
45 & 1 & 0 & -4.496761 & 3.121486 & -0.728321 \\
46 & 1 & 0 & 0.085702 & -5.566312 & 0.322258 \\
47 & 16 & 0 & -2.647172 & -3.317789 & -0.477903 \\
48 & 16 & 0 & -4.266467 & -0.208121 & 0.692340
\end{tabular}

SCF done: -2904.704136 Hartree
No imaginary Frequency.

DFT optimized S0 state geometry of BDP3.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Type
\end{tabular}}} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & & X Y & Z \\
\hline 1 & 16 & 0 & -4.129698 & 4.737752 & -0.266333 \\
\hline 2 & 16 & 0 & -3.955426 & -4.750843 & -0.909144 \\
\hline 3 & 1 & 0 & -5.052412 & -1.756180 & 0.825568 \\
\hline 4 & 1 & 0 & -5.075982 & 1.514604 & 1.110541 \\
\hline 5 & 9 & 0 & -3.798293 & -0.133848 & 1.372355 \\
\hline 6 & 9 & 0 & -3.960448 & 0.015864 & -0.909454 \\
\hline 7 & 7 & 0 & -0.093522 & 0.013561 & 0.080629 \\
\hline 8 & 7 & 0 & -2.126205 & -1.265729 & 0.037704 \\
\hline 9 & 7 & 0 & -2.167377 & 1.222441 & 0.196583 \\
\hline 10 & 6 & 0 & -5.806396 & 4.633755 & 0.133048 \\
\hline 11 & 1 & 0 & -6.454220 & 5.482142 & -0.039088 \\
\hline 12 & 6 & 0 & -6.135202 & 3.402637 & 0.639168 \\
\hline 13 & 1 & 0 & -7.137762 & 3.137362 & 0.953449 \\
\hline 14 & 6 & 0 & -3.849556 & 3.079418 & 0.261632 \\
\hline 15 & 6 & 0 & -2.507972 & 2.548647 & 0.205030 \\
\hline 16 & 6 & 0 & -1.332429 & 3.331621 & 0.139444 \\
\hline 17 & 1 & 0 & -1.313993 & 4.411315 & 0.135517 \\
\hline 18 & 6 & 0 & -0.234160 & 2.478806 & 0.093664 \\
\hline 19 & 6 & 0 & -0.779373 & 1.145081 & 0.130696 \\
\hline 20 & 6 & 0 & -5.646585 & -4.746940 & -0.560296 \\
\hline 21 & 1 & 0 & -6.260023 & -5.585410 & -0.859836 \\
\hline 22 & 6 & 0 & -6.032349 & -3.599252 & 0.083256 \\
\hline 23 & 1 & 0 & -7.052710 & -3.405153 & 0.392229 \\
\hline 24 & 6 & 0 & -3.748124 & -3.165021 & -0.168638 \\
\hline 25 & 6 & 0 & -2.423441 & -2.593530 & -0.112345 \\
\hline 26 & 6 & 0 & -1.220792 & -3.333530 & -0.192424 \\
\hline 27 & 1 & 0 & -1.165660 & -4.410135 & -0.255642 \\
\hline 28 & 6 & 0 & -0.150914 & -2.451352 & -0.080734 \\
\hline 29 & 6 & 0 & -0.740212 & -1.142027 & 0.043887 \\
\hline 30 & 5 & 0 & -3.092962 & -0.040045 & 0.160152 \\
\hline 31 & 6 & 0 & -4.959915 & -2.699110 & 0.306958 \\
\hline
\end{tabular}
\begin{tabular}{lccccc}
32 & 6 & 0 & -5.029572 & 2.518058 & 0.713539 \\
33 & 6 & 0 & 1.150881 & 2.872988 & 0.018330 \\
34 & 6 & 0 & 3.612254 & 3.040630 & -0.293010 \\
35 & 6 & 0 & 3.054355 & 4.253815 & 0.014859 \\
36 & 1 & 0 & 3.624152 & 5.168764 & 0.113646 \\
37 & 6 & 0 & 1.247279 & -2.805290 & -0.075785 \\
38 & 6 & 0 & 3.708685 & -2.955043 & 0.247474 \\
39 & 6 & 0 & 3.196062 & -4.099917 & -0.304724 \\
40 & 1 & 0 & 3.798826 & -4.958331 & -0.571872 \\
41 & 6 & 0 & 1.652042 & 4.152205 & 0.188123 \\
42 & 6 & 0 & 1.793179 & -4.010233 & -0.482253 \\
43 & 1 & 0 & 1.196541 & -4.805541 & -0.913467 \\
44 & 1 & 0 & 1.024205 & 4.997311 & 0.444890 \\
45 & 16 & 0 & 2.449647 & 1.754604 & -0.365923 \\
46 & 16 & 0 & 2.501843 & -1.745261 & 0.544917 \\
47 & 35 & 0 & 5.432979 & 2.683759 & -0.605271 \\
48 & 35 & 0 & 5.512847 & -2.609448 & 0.655074
\end{tabular}

\section*{SCF done: -8046.899982 Hartree}

No imaginary Frequency.

DFT optimized S0 state geometry of BDP4.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Center \\
Number
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Atomic \\
Number
\end{tabular}} & \multirow[t]{2}{*}{Atomic Type} & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline & & & X Y & Z \\
\hline 1 & 16 & \(0-3.762300\) & 4.767457 & -0.495901 \\
\hline 2 & 16 & \(0-3.735034\) & -4.757095 & -0.696106 \\
\hline 3 & 10 & -4.796843 & -1.677786 & 0.904472 \\
\hline 4 & 10 & -4.797936 & 1.615399 & 0.974745 \\
\hline 5 & 9 & -3.544965 & -0.028079 & 1.357433 \\
\hline 6 & 90 & -3.666152 & -0.001864 & -0.931613 \\
\hline 7 & 70 & 0.178180 & -0.004703 & 0.118151 \\
\hline 8 & 70 & -1.867694 & -1.257936 & 0.115137 \\
\hline 9 & 70 & -1.873048 & 1.240030 & 0.140516 \\
\hline 10 & 6 & \(0-5.451487\) & 4.707949 & -0.135643 \\
\hline 11 & 1 & \(0-6.079663\) & 5.560203 & -0.354889 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
12 & 6 & 0 & -5.813048 & 3.502506 & 0.406668 \\
13 & 1 & 0 & -6.827613 & 3.264713 & 0.704652 \\
14 & 6 & 0 & -3.523916 & 3.125679 & 0.101363 \\
15 & 6 & 0 & -2.189076 & 2.570684 & 0.096896 \\
16 & 6 & 0 & -0.998005 & 3.330340 & 0.030153 \\
17 & 1 & 0 & -0.966242 & 4.408999 & -0.017660 \\
18 & 6 & 0 & 0.090746 & 2.463385 & 0.028105 \\
19 & 6 & 0 & -0.482938 & 1.141082 & 0.099719 \\
20 & 6 & 0 & 1.502752 & 2.822893 & -0.021561 \\
21 & 6 & 0 & 1.921765 & 4.119563 & 0.337534 \\
22 & 1 & 0 & 1.189494 & 4.838034 & 0.693141 \\
23 & 6 & 0 & 3.250067 & 4.508624 & 0.279500 \\
24 & 1 & 0 & 3.508076 & 5.518121 & 0.574238 \\
25 & 6 & 0 & 4.255126 & 3.606880 & -0.146598 \\
26 & 6 & 0 & 3.837646 & 2.306382 & -0.517379 \\
27 & 1 & 0 & 4.558544 & 1.581216 & -0.874032 \\
28 & 6 & 0 & 2.504830 & 1.929958 & -0.451941 \\
29 & 1 & 0 & 2.225054 & 0.927041 & -0.748753 \\
30 & 6 & 0 & -5.429069 & -4.717439 & -0.355604 \\
31 & 1 & 0 & -6.052399 & -5.559802 & -0.621833 \\
32 & 6 & 0 & -5.800655 & -3.538802 & 0.236849 \\
33 & 1 & 0 & -6.819619 & -3.317135 & 0.532260 \\
34 & 6 & 0 & -3.509030 & -3.145018 & -0.020390 \\
35 & 6 & 0 & -2.176167 & -2.587545 & 0.019044 \\
36 & 6 & 0 & -0.980612 & -3.342247 & -0.020780 \\
37 & 1 & 0 & -0.943048 & -4.421716 & -0.036074 \\
38 & 6 & 0 & 0.102542 & -2.472133 & 0.067608 \\
39 & 6 & 0 & -0.478404 & -1.153563 & 0.132802 \\
40 & 6 & 0 & 1.516964 & -2.820688 & 0.087339 \\
41 & 6 & 0 & 2.502307 & -1.975929 & 0.636549 \\
42 & 1 & 0 & 2.206217 & -1.021416 & 1.053662 \\
43 & 6 & 0 & 3.839795 & -2.340266 & 0.668356 \\
44 & 1 & 0 & 4.547845 & -1.656887 & 1.120386 \\
45 & 6 & 0 & 4.277671 & -3.579486 & 0.142992 \\
46 & 6 & 0 & 3.288575 & -4.434593 & -0.400860 \\
47 & 1 & 0 & 3.563094 & -5.396738 & -0.814862 \\
48 & 6 & 0 & 1.955606 & -4.058022 & -0.424278 \\
49 & 1 & 0 & 1.234672 & -4.734903 & -0.872810 \\
50 & 5 & 0 & -2.813960 & -0.011628 & 0.153938 \\
51 & 6 & 0 & -4.715953 & -2.644191 & 0.428505 \\
& & & &
\end{tabular}
\begin{tabular}{llllll}
52 & 6 & 0 & -4.724331 & 2.602584 & 0.542599 \\
53 & 7 & 0 & 5.586652 & 3.980353 & -0.192038 \\
54 & 7 & 0 & 5.613825 & -3.938706 & 0.154277 \\
55 & 6 & 0 & 5.954992 & 5.368596 & 0.029413 \\
56 & 1 & 0 & 7.039609 & 5.465357 & -0.031545 \\
57 & 1 & 0 & 5.507973 & 6.048617 & -0.711011 \\
58 & 1 & 0 & 5.648548 & 5.706551 & 1.026334 \\
59 & 6 & 0 & 6.569034 & 3.079067 & -0.769356 \\
60 & 1 & 0 & 7.559423 & 3.528345 & -0.686302 \\
61 & 1 & 0 & 6.592603 & 2.123573 & -0.232420 \\
62 & 1 & 0 & 6.377052 & 2.865197 & -1.831536 \\
63 & 6 & 0 & 6.003261 & -5.283586 & -0.235231 \\
64 & 1 & 0 & 7.088740 & -5.372621 & -0.178140 \\
65 & 1 & 0 & 5.561439 & -6.056531 & 0.411163 \\
66 & 1 & 0 & 5.707901 & -5.498631 & -1.268877 \\
67 & 6 & 0 & 6.579349 & -3.103834 & 0.848156 \\
68 & 1 & 0 & 7.576546 & -3.526073 & 0.718077 \\
69 & 1 & 0 & 6.593095 & -2.088446 & 0.435105 \\
70 & 1 & 0 & 6.377198 & -3.027082 & 1.927075
\end{tabular}

SCF done: -2531.150521 Hartree
No imaginary Frequency.

DFT optimized S0 state geometry of BDP5.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Center & Atomic & & Atomic & \multicolumn{2}{|l|}{Coordinates (Angstroms)} \\
\hline Number & Number & & Type & \(X \quad Y\) & Z \\
\hline 1 & 16 & 0 & -3.219295 & 4.792746 & -0.542111 \\
\hline 2 & 16 & 0 & -3.228412 & -4.781234 & -0.573950 \\
\hline 3 & 1 & 0 & -4.304563 & -1.641121 & 0.899513 \\
\hline 4 & 1 & 0 & -4.304490 & 1.634660 & 0.885750 \\
\hline 5 & 9 & 0 & -3.042647 & 0.005376 & 1.339212 \\
\hline 6 & 9 & 0 & -3.148954 & -0.006798 & -0.951358 \\
\hline 7 & 7 & 0 & 0.683446 & -0.004046 & 0.109550 \\
\hline 8 & 7 & 0 & -1.365306 & \(-1.253905\) & 0.127895 \\
\hline 9 & 7 & 0 & -1.363048 & 1.249913 & 0.112654 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
10 & 6 & 0 & -4.911918 & 4.738892 & -0.211993 \\
11 & 1 & 0 & -5.530717 & 5.597182 & -0.434664 \\
12 & 6 & 0 & -5.293222 & 3.530824 & 0.314534 \\
13 & 1 & 0 & -6.314295 & 3.299873 & 0.593972 \\
14 & 6 & 0 & -3.002649 & 3.142917 & 0.041643 \\
15 & 6 & 0 & -1.676237 & 2.578375 & 0.050120 \\
16 & 6 & 0 & -0.473586 & 3.333412 & -0.017757 \\
17 & 1 & 0 & -0.432154 & 4.410999 & -0.081728 \\
18 & 6 & 0 & 0.601932 & 2.460511 & 0.001227 \\
19 & 6 & 0 & 0.025045 & 1.142632 & 0.080455 \\
20 & 6 & 0 & 2.023836 & 2.811899 & -0.035296 \\
21 & 6 & 0 & 2.442225 & 4.074972 & 0.428729 \\
22 & 1 & 0 & 1.713694 & 4.758166 & 0.852370 \\
23 & 6 & 0 & 3.776419 & 4.452333 & 0.382556 \\
24 & 1 & 0 & 4.085104 & 5.425419 & 0.748844 \\
25 & 6 & 0 & 4.737619 & 3.566296 & -0.133330 \\
26 & 6 & 0 & 4.335606 & 2.302175 & -0.596024 \\
27 & 1 & 0 & 5.076147 & 1.619803 & -0.999294 \\
28 & 6 & 0 & 2.997733 & 1.932022 & -0.547523 \\
29 & 1 & 0 & 2.695223 & 0.957894 & -0.909240 \\
30 & 6 & 0 & -4.921475 & -4.727007 & -0.245077 \\
31 & 1 & 0 & -5.542812 & -5.579881 & -0.481043 \\
32 & 6 & 0 & -5.299520 & -3.525701 & 0.299086 \\
33 & 1 & 0 & -6.320181 & -3.295924 & 0.581010 \\
34 & 6 & 0 & -3.007586 & -3.141926 & 0.035433 \\
35 & 6 & 0 & -1.679649 & -2.581709 & 0.055398 \\
36 & 6 & 0 & -0.477944 & -3.339764 & 0.014441 \\
37 & 1 & 0 & -0.438117 & -4.419320 & 0.010241 \\
38 & 6 & 0 & 0.598242 & -2.468991 & 0.079593 \\
39 & 6 & 0 & 0.022684 & -1.149948 & 0.135865 \\
40 & 6 & 0 & 2.020026 & -2.818329 & 0.085731 \\
41 & 6 & 0 & 2.987379 & -1.990412 & 0.688891 \\
42 & 1 & 0 & 2.678747 & -1.059795 & 1.147562 \\
43 & 6 & 0 & 4.327039 & -2.356817 & 0.704938 \\
44 & 1 & 0 & 5.062857 & -1.715664 & 1.178363 \\
45 & 6 & 0 & 4.736591 & -3.566132 & 0.118618 \\
46 & 6 & 0 & 3.781654 & -4.400268 & -0.487880 \\
47 & 1 & 0 & 4.096731 & -5.330183 & -0.948665 \\
48 & 6 & 0 & 2.445794 & -4.026339 & -0.501510 \\
49 & 1 & 0 & 1.721241 & -4.666280 & -0.994062 \\
& & & &
\end{tabular}
\begin{tabular}{llllll}
50 & 5 & 0 & -2.311701 & -0.001348 & 0.141801 \\
51 & 6 & 0 & -4.218769 & -2.623798 & 0.459505 \\
52 & 6 & 0 & -4.215325 & 2.623059 & 0.459809 \\
53 & 6 & 0 & 6.116886 & 3.951132 & -0.184644 \\
54 & 6 & 0 & 6.117462 & -3.948130 & 0.137146 \\
55 & 7 & 0 & 7.236209 & 4.266313 & -0.225187 \\
56 & 7 & 0 & 7.238137 & -4.260786 & 0.151124
\end{tabular}

SCF done: -2447.681046Hartree No imaginary Frequency.

\section*{IV. References}
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, 2016.
[2] P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning, E. W. Meijer, Science 2006, 313, 80-83.~~~


[^0]:    ${ }^{\text {a }}$ Excited state. ${ }^{\mathrm{b}}$ Oscillator strength. ${ }^{\mathrm{c}} \mathrm{MOs}$ involved in the transitions.

