Supporting Information

Covalent Organic Framework as Dual-Active-Center Cathode for

High-Performance Aqueous Zinc-Ion Battery

Hongbao Li,^{a,1} Mengge Cao,^{a,1} Zhenli Fu,^{a,1} Quanwei Ma,^a Longhai

Zhang,^a Rui Wang,^a Fei Liang,^a Tengfei Zhou,^a Chaofeng Zhang^{*a}

^{a.} Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
*Corresponding Author: cfz@ahu.edu.cn (C. Zhang)

¹ These authors contributed equally to this work

Scheme S1. Synthetic route of 2,7-diaminopyrene-4,5,9,10-tetraone (PTO-NH₂).

Fig. S1 ¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of PTO.

Fig. S2 ¹H NMR spectrum of PTO-NO₂.

Fig. S3 ¹H NMR spectrum of PTO-NH₂.

Fig. S4 UV-vis spectra of TA-PTO-COF in the electrolyte (2 M ZnSO₄).

Fig. S5 Cycle stability of TA-PTO-COF in different electrolyte at 0.1 A g^{-1} .

Fig. S6 Discharge/charge profiles of PTO-NH₂ in 2 M ZnSO₄ electrolyte at 1 A g^{-1} .

Fig. S7 (a) CV curves of the PTO-NH $_2$ cathode at various scan rates. (b) b values of PTO-NH $_2$.

Fig. S8 Typical CV curves of TA-PTO-COF at 0.1 mV s⁻¹ in 2M ZnSO₄ and 1M H₂SO₄ electrolyte.