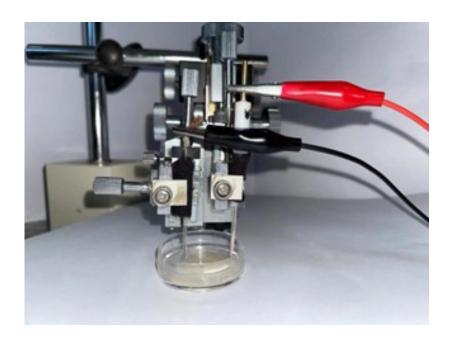
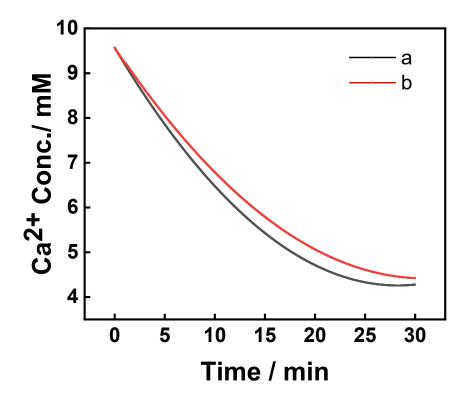
Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2023

Supporting Information


An all-solid-state potentiometric microsensor for real-time monitoring of the calcification process by *Bacillus subtilis* biofilm

Jiabin Wang, ab Jiawang Ding, *abcd and Wei Qinabcd


^a CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, Shandong (P. R. China)
^b University of Chinese Academy of Sciences, Beijing 100049 (P. R. China)

^c Center for Ocean Mega-Science, Chinese Academy of Sciences Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, Shandong (P. R. China)

^d Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong (P. R. China)

Fig. S1 The photograph of the setup for *in situ* detection of the calcification process by *Bacillus subtilis* biofilm.

Fig. S2 Different measurements of *Bacillus subtilis* biofilms in Ca^{2+} concentration due to calcification over a half-hour period (The curve a and b). The sensor was held at 200 μ m above the biofilm during the measurement.