Supplementary Information

Machine-learning-aided Multiplexed Nanoplasmonic Biosensor for COVID-19 Population Immunity Profiling

Aidana Beisenova^{a,†}, Wihan Adi^{a,†}, S. Janna Bashar^b, Monniiesh Velmurugan^{c,d}, Kenzie B. Germanson^a, Miriam A. Shelef ^{b,e}, Filiz Yesilkoy^{a,*}

^aDepartment of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

^bDepartment of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA

^cDepartment of Computer Science, University of Wisconsin-Madison, Madison, WI 53706, USA

^dDepartment of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA

^eWilliam S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA

†These authors contributed equally to this work

*Corresponding author. Email: <u>filiz.yesilkoy@wisc.edu</u>

S1: Distribution of infection rate, vaccination rate, and omicron share predicted by	2-3
ML-aided nanobiosensor to identify the 95% confidence intervals.	

S1. Distribution of omicron share, infection rate, and vaccination rate predicted by the random forest classification model. The red vertical lines indicate upper and lower bounds of the 95% confidence intervals.