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Supporting Information

S1: Device Fabrication 

Device Fabrication:

The fabrication of the viscometer device involves micromachining a zigzag array of wells 

in an aluminium (Al) mould with a well depth of H = 1500 µm and a well diameter of D = 

300 µm (Figure 1). We chose the microsensor geometry and their arrangement within the 

microchannel based on the results of CFD studies as shown in Figure S2. To obtain an array 

of flexible microsensors, PDMS (Sylgard 184, Dow Corning, USA) with a base to curing 

agent ratio of 10:1 was cast onto the mould and degassed for 30 minutes. Subsequently, the 

mould was baked at 75 ºC for 60 minutes. Cured PDMS replica was then removed from the 

mould using a surgical scalpel and two access holes for inlet and outlet were punched. The 

final device was obtained by treating both the PDMS replica and a glass microscope slide 

(25×75 mm) in oxygen plasma for 45 seconds and then bringing them into conformal 

contact. The final device had a height of 1600 µm leaving a gap of 100 µm between the 

pillar tips and the channel ceiling. The fabrication process explained above is depicted in 

Figure 1 with panel (d) showing the top image of the final device.29 

Figure S1 (a) Micromachined aluminium mould having 10 microwells each with an aspect 

ratio (H:D) of 5:1 (height H = 1500 µm and diameter D = 300 µm). (b) PDMS casting and 

curing at 75 ºC for 60 minutes. (c) Final PDMS chip with microsensors of height H = 1500 
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µm and diameter D = 300 µm. Channel length L = 6000 µm, channel width W = 900 µm. 

(d) Top image of the fabricated device. 

S2: Comparison of CFD and Experimental microsensor deflection data as function of 

flow rate. (a, b and c). Microsensor deflection data for zigzag and straight microsensor 

array configurations. 

In recent years numerical simulations based on finite element methods have been used to 

aid the development of microfluidic devices by verifying and optimizing the design and 

operating parameters. We developed a CFD model for our microfluidic viscometer device 

based on modelling fluid-structure interactions by coupling laminar form of Navier-Stokes 

equation to large strain equations for hyperelastic polymers. The governing equations are 

provided below

𝜌(𝑢𝑓𝑙𝑢𝑖𝑑 ∙ ∇)𝑢𝑓𝑙𝑢𝑖𝑑 = ∇ ∙ [ ‒ 𝑝𝐼 + 𝐾] + 𝐹

             (2)       𝐾 = 𝜇(∇𝑢𝑓𝑙𝑢𝑖𝑑 + (∇𝑢𝑓𝑙𝑢𝑖𝑑)𝑇)

where ρ is fluid density, u is linear velocity, µ is the fluid viscosity, and p is the pressure. 

The fluid was modelled as an incompressible fluid by coupling Equation 1 with the 

continuity equation: 

(3)𝜌∇ ∙ 𝑢𝑓𝑙𝑢𝑖𝑑 = 0

Equations of motion for large strains were solved to account for deflection of PDMS 

microsensors under shear stress.

                    (4)0 = ∇ ∙ (𝐹 ∙ 𝑆)𝑇 + 𝐹𝑣

The CFD model assumed that the microsensor base is fixed, that is µsolid = 0, which ensures 

that deflection due to shear stress is maximum at the pillar tip and zero at the pillar base. 

COMSOL Multiphysics module was used to solve for the coupled equations listed above 

and obtain the microsensor tip deflection values for each fluid sample at a given flow rate. 

A user-controlled mesh was created with a maximum element size of 1330 µm and a 

minimum element size of 180 µm. Entire geometry was calibrated for fluid dynamic 

physics using free tetrahedral sub node, effectively creating an unstructured mesh. 

Boundary layer properties were adjusted by choosing a boundary layer stretching factor of 
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1.2 and a thickness adjustment factor of 5. We assumed that field variables do not change 

over time hence, stationary study node was used for computing results. In order to The CFD 

studies were performed for two different viscometer geometries (zigzag and straight). 

Figure S1 a, b and c compares the CFD simulation results with our experimental results 

while in Figures S1 d, e and f we compare two microfluidic geometries zigzag and straight.

Figure S2. Comparison between experimental and CFD simulation results for (a) 10 cP, (b) 

15 cP and (c) 75 cP. Flow rate versus tip deflection for (d) 5 cP, (e) 10 cP, and (f) 15 cP 

solutions in microchannels with zigzag and straight microsensor arrangement.
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The results in Figure S2 d, e and f depict that the microfluidic viscometer with a zigzag 

microsensor arrangement yields higher tip deflection compared to a straight microsensor 

arrangement due to enhanced fluid-structure interaction [29, 31, main text].

S3: Variation in Deflection Amplitude from Pillar to Pillar

Through CFD simulations, we concluded that microsensors in the middle of the array were 

more responsive to the changes in flow rate and viscosity. We observed that microsensor 

#6 displayed the highest deflection values compared to other pillars in the array. For 

instance, results shown in Figure S2 depict that at a flow rate of 45 ml/hr microsensor #1 

yields a deflection of 4 µm whereas microsensor #6 yields a deflection of 6 µm. Based on 

these results, we decided to use tip deflection of microsensor #6 to obtain viscosity values. 
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Figure S3. (a) Flow rate versus deflection plots for pillar #1 and pillar #6 for a 5 cP 

solution. (b) Pillar arrangement in microchannel.

S4: Comparison of different CFD models of Viscosity vs Flow rate (Blood sample)

To determine microsensor deflection, we adopted a method similar to the Newtonian fluid 

case, primarily coupling laminar flow with solid mechanics; however, this time by choosing 

inelastic non-Newtonian constitutive relation for the infused fluid. The parameters for both 

models were chosen from literature 40–42. The results shown in Figure S4.1 compare the 

blood viscosity values measured using our microsensor-based viscometer with those 

calculated using power law and Carreu model. At 15ml/hr, the viscosity of blood is 

measured to be 5.4 cP and when the flow rate is increased to 105ml/hr, the viscosity reduces 

to 2.7 cP due to shear thinning. Similarly, Carreu model for non-Newtonian fluids predicts 

the blood viscosity to be 4.6 cP at 15ml/hr and 1.7 cP at 105 ml/hr. The results indicate that 
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power law for non-Newtonian fluids more accurately models the shear-thinning behaviour 

of blood for our microfluidic viscometer. A shear rate versus viscosity plot was also 

generated for the whole blood sample as shown in Figure S4.3. The results indicated a 

decrease in the whole blood 

viscosity with increasing shear 

rate. 

Figure S4.1 Comparison of experimental and CFD-based measurements of viscosity of 

whole blood samples 

using a microfluidic 

viscometer and CFD 

simulations based on 

power law and Carreau 

models.
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Figure S4.2 (a) Power law viscosity measurement at 15ml/hr. (b) Power law viscosity 

measurement at 105ml/hr. (c) Carreau model viscosity measurement at 15ml/hr. (d) Carreau 

model viscosity measurement at 105ml/hr.

Figure S4.3. Viscosity (cP) versus shear rate (s-1) plot for whole blood sample. The blood 

sample exhibits shear-thinning behaviour, characterized by a decrease in viscosity with 

increasing shear rate. 

S5: Effect of Aspect Ratio on Microsensor Deflection

Microsensors with higher aspect ratios yield larger deflections under the same flow rate and 

viscosity. The sensitivity of the microfluidic viscometer therefore increases with higher 

aspect ratio microsensors; however, this also results in reduction of the dynamic range of 

the device. We verified this increase in sensitivity and decrease in dynamic range through 

CFD analysis of microsensors with an aspect ratio of 5:1 (H = 1500 µm : D = 300 µm) and 

10:1 (H = 3000 µm : D = 300 µm) as shown in Figure S4. While microsensors with higher 

aspect ratio are more sensitive, fabrication process of these microsensors poses additional 

challen

ges.
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Figure S5. Comparison of microsensor tip deflection with different aspect ratios. Flow rate 

versus microsensor tip deflection for (a) 5:1 (b) 10:1 aspect ratio microsensors. 

S6: Machine Learning Concepts

Classification of the data is an important step during this work. Using machine learning 

(ML) algorithms helped us to prove the feasibility of the device. During the process we 

tested the device accuracy by using two ML algorithms, i.e., Support Vector Machine 

(SVM) and K-Nearest Neighbour (k-NN). k-NN showed better performance as compared 

to SVM. 

Data representation and its classification is the key factor for any system to be validated. 

ML is the concept of representing the data in its compressed form. As per saying “Machine 

learning (ML) is the field of study that gives computer the ability to learn without being 

explicitly programmed. ML is categorised into two types, known as supervised and 

unsupervised learning. Both SVM and k-NN represents the supervised learning. 

Results:

We used 1323 data samples where 926 data samples (70% of total data) were used for 

training and 397 data samples for validation. The training accuracy and validation accuracy 

of all data using ML algorithms are presented in Table 1. In SVM, support vectors play an 

essential role as they are the points that lie closest to the supporting hyperplane. While 

training SVM, 610 out of a total of 926 data samples were utilized as support vectors. In 

Table 2, we presented the number of supporting vectors used for each class. 

From Table 1, it is clearly visible that both algorithms are providing acceptable accuracy 

results, where the result of k-NN higher than SVM. The classification result is commonly 

depicted in the confusion matrix. The confusion matrix always helps to figure out how the 

accuracy result appears and miss prediction between classes. The confusion matrix of SVM 

and k-NN is presented in Tables 2 and 3.
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Table 1: List of support vectors in SVM

Support Vectors in SVM

Class Number of Support Vectors Total

5 cP 80

10 cP 88

15 cP 95

25 cP 80

50 cP 95

75 cP 87

100 cP 85

610

Table 2: Confusion matrix of SVM with known viscosities.

SVM Confusion Matrix with 397 Samples

Predicted

Class 5cP 10 cP 15 cP 25 cP 50 cP 75 cP 100 cP

5 cP 55 1 0 0 0 0 0

10 cP 9 49 0 0 0 0 0

15 cP 5 1 48 2 0 0 0

25 cP 0 0 0 57 0 0 0

50 cP 0 0 0 0 47 9 0

75 cP 0 0 0 4 0 49 3

A
ct

ua
l

100 cP 0 0 0 0 5 2 51

Table 3: Confusion matrix of k-NN with known viscosities.

k-NN Confusion Matrix with 397 Samples

Predicted

Class 5cP 10 cP 15 cP 25 cP 50 cP 75 cP 100 cP

5 cP 55 1 0 0 0 0 0

10 cP 2 56 0 0 0 0 0

A
ct

ua
l

15 cP 5 1 56 2 0 0 0
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25 cP 0 0 0 58 0 0 0

50 cP 0 0 0 0 55 1 0

75 cP 0 0 0 4 0 55 3

100 cP 0 0 0 0 5 2 56

From Table 3, we can observe that, from class 5cp, only 1 data mismatched with other class 

10 cP, and from the class 25 cP, no data mismatched with other classes. Data from the rest 

of the five classes are mismatched with other classes, and the mismatched ratio stays 

between 2 and 9.

From Table 4, we can see that, from class 5 cP and 50 cP, only 1 data mismatched with 

other class. All the data from class 25 cP predicted successfully, so there is no mismatch 

with other classes. Data from the rest of the four classes are mismatched with other classes, 

and the mismatched ratio stays between 2 and 8.

We employed three important matrices to evaluate the performance of the used ML 

algorithms. Employed matrices are precision (PR), recall (RE), and f1-score (F1), and they 

can be defined as,

Precision helps to measure how many data points are correctly predicted by the model over 

the amount of correct and incorrect predictions. Recall is used to measure how many data 

points are correctly predicted by the model over the total amount of data points. F1-score 

measures the overall accuracy of a model by combining precision and recall. An excellent 

F1-score stands for low false positives and low false negatives, which correctly identifies 

real threats. F1-score is always considered as perfect when it has value 1. On the other 

hand, the model is considered as bad when it has 0. Table 5 presented precision, recall, and 

F1-score of SVM and k-NN algorithm accordingly. 

Table 4: Calculated performance matrices of SVM.

SVM Performance Result (%)

Class Precision Recall F1-Score

5 cP 0.79 0.98 0.88

10 cP 0.96 0.84 0.89

15 cP 1 0.85 0.92

25 cP 0.90 1 0.95
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50 cP 0.90 0.83 0.87

75 cP 0.81 0.87 0.84

100 cP 0.94 0.88 0.91

Table 5: Calculated performance matrices of k-NN.

k-NN Performance Result (%)

Class Precision Recall F1-Score

5 cP 0.96 0.98 0.97

10 cP 0.98 0.96 0.97

15 cP 1 1 1

25 cP 1 1 1

50 cP 1 0.98 0.99

75 cP 0.94 1 0.97

100 cP 1 0.96 0.98

Table 5 shows a higher value of the f1-score achieved when both precision and recall values 

are high, which means the mismatched ratio between each class is low. Between SVM and 

k-NN, k-NN achieved higher f1-scores than SVM.

S7: Experimental Videos

ESI. (a) Aqueous Glycerol 50 cP, 15 ml/hr.

Movie depicts microsensor deflection as the fluid (Aqueous glycerol with a viscosity of 50 
cP) is infused into the microfluidic viscometer at 15ml/hr. The microsensors deflect as the 
fluid passes through the device and eventually come back to their original position once the 
flow is stopped. 

  ESI. (b) Whole blood sample 5.74 cP, 45 ml/hr

Movie depicts microsensor deflection as the whole blood( Viscosity value of 5.74 cP) is 
infused into the microfluidic viscometer at 45ml/hr. The microsensors deflect as the blood 
passes through the device and eventually come back to their original position once the flow 
is stopped. 

ESI. (c) Whole blood coagulation at 15 ml/hr
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The movie depicts the coagulation of whole blood sample. We can see that as blood 
coagulates its viscosity increases. This increase in viscosity is translated into an apparent 
increase in the deflection of the microsensor. 


