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Figure S1 Defromations of the the PAA/Starch/MXene organohydrogel with 

compressing and releasing states.
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Figure S2 Compressive stress-strain curves of PAA, PAA/Starch and 

PAA/Starch/MXene organohydrogels. 

Figure S3 (a) Frequency scanning curve of PAA, PAA/Starch, and 

PAA/Starch/MXene organohydrogels; (b) Storage modulus (G’) and loss modulus 

(G’’) of the PAA/Starch/MXene organohydrogel as a function of temperature.



Figure S4 Loading-unloading curves of (a) PAA (b) PAA/Starch and (c) 

PAA/Starch/MXene organohydrogel at different strain of 100-300%; (d) Loading-

uploading curves of the organohydrogels at the same strain of 200%; (e) Calculated 

dissipate energy from Figure S3d; Successive cyclic loading-unloading curves at a 

maximum strain of 200% without intervals for (f) PAA (g) PAA/Starch and (h) 

PAA/Starch/MXene organohydrogels. 

Figure S5 Repeatable adhesion behaviors of the different substrates tested by cyclic 

tensile adhesion tests. (a) PTFE. (b) Porcine skin. (c) Glass. (d) Iron. (e) Copper.



Figure S6 Real-time relative resistance changes for the detection of throat swallowing.

Figure S7 Gestures corresponding to 26 English letters.



Figure S8 Weight change curve of organohydrogel with ethylene glycol and without 

ethylene glycol over time.

Table S1 Sample compositions of the organohydrogels

Sample
AA 
/g

Starch /g
MXene 

/mL
Ethylene 

Glycol /mL
MBA /mg H2O /mL APS /mg

PAA 4 0 0 3 4 7 5
PAA/Starch (0:7) 4 0 1.5 3 4 5.5 5

PAA/Starch (1:7) 4 0.5714 1.5 3 4 5.5 5

PAA/Starch (2:7) 4 1.1428 1.5 3 4 5.5 5
PAA/Starch (3:7) 4 1.7142 1.5 3 4 5.5 5

PAA/Starch/MXene 
(0 mg/ml)

4 1.1428 0 3 4 7 5

PAA/Starch/MXene 
(1.5 mg/ml)

4 1.1428 1.5 3 4 5.5 5

PAA/Starch/MXene 
(2.5 mg/ml)

4 1.1428 2.5 3 4 4.5 5

PAA/Starch/MXene 
(3.5 mg/ml)

4 1.1428 3.5 3 4 3.5 5

PAA/Starch/MXene 
(4.5 mg/ml)

4 1.1428 4.5 3 4 2.5 5

PAA/Starch/MXene 
(5.5 mg/ml)

4 1.1428 5.5 3 4 1.5 5

PS: Concentration of MXene is 10 mg mL-1



Table S2 Comparison of comprehensive performances of the reported starch-based hydrogels

N/A is donated as ‘not available’ in the references.

Hydrogels
Fracture

strain (%)
Fracture

stress (MPa)
Toughness
(MJ m-3)

Workable 
strain 

range (%)

Gauge 
factor

Self-adhesive 
ability

Anti-fatigue 
ability

Freezing 
tolerance 

(℃)
Ref.

Starch/PVA/AlCl3/[Emim]A

c
567 0.52 1.42 400 5.93 N/A N/A -20 [1]

P(Am-DMC)-CMS 411 0.217 0.43 400 5.73 N/A Yes N/A [2]

St-PVA-GO-IL 657.5 0.64 2.08 500 6.04 N/A Yes -20 [3]

STH 135 0.06 N/A 50 0.98 Yes Yes N/A [4]

Starch/PVA/EG/TA/CaCl2 606.8 1.1 2.56 500 2.51 N/A N/A -32.2 [5]

Starch/PVA/glycerol/CaCl2 790 0.53 1.99 400 3.42 N/A N/A -29.8 [6]

MMs-DN 1615 0.483 N/A 400 3.7 N/A Yes -40 [7]

AA/Starch 98 % 1290 0.023 N/A 500 5.6 Yes Yes N/A [8]

SPAE 567 0.53 N/A 400 5.93 N/A N/A -20 [9]

PAA/Starch/MXene 1237 0.34 2.40 880 14.19 Yes Yes -30
this 

work
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