## Enhanced Mechanical and Electrical Properties of Starch-Based Hydrogels Incorporating Polyacrylic Acid and MXene for Advanced Wearable Sensors in Sign Language Recognition

Jionghong Liang<sup>1,2</sup>, Ke Ma<sup>1</sup>, Wenshuo Gao<sup>1</sup>, Yue Xin<sup>1\*</sup>, Shousen Chen<sup>1</sup>,

Weicheng Qiu<sup>1</sup>, Gengzhe Shen<sup>3</sup>, Xin He<sup>1\*</sup>

<sup>1</sup> School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China;

<sup>2</sup> School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China;

<sup>3</sup> Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519003, P.R. China.

Correspondences: Yue Xin (xin3231946@163.com); Xin He (hexin@wyu.edu.cn)



Figure S1 Defromations of the the PAA/Starch/MXene organohydrogel with compressing and releasing states.



**Figure S2** Compressive stress-strain curves of PAA, PAA/Starch and PAA/Starch/MXene organohydrogels.



**Figure S3** (a) Frequency scanning curve of PAA, PAA/Starch, and PAA/Starch/MXene organohydrogels; (b) Storage modulus (G') and loss modulus (G'') of the PAA/Starch/MXene organohydrogel as a function of temperature.



**Figure S4** Loading-unloading curves of (a) PAA (b) PAA/Starch and (c) PAA/Starch/MXene organohydrogel at different strain of 100-300%; (d) Loading-uploading curves of the organohydrogels at the same strain of 200%; (e) Calculated dissipate energy from Figure S3d; Successive cyclic loading-unloading curves at a maximum strain of 200% without intervals for (f) PAA (g) PAA/Starch and (h) PAA/Starch/MXene organohydrogels.



**Figure S5** Repeatable adhesion behaviors of the different substrates tested by cyclic tensile adhesion tests. (a) PTFE. (b) Porcine skin. (c) Glass. (d) Iron. (e) Copper.



Figure S6 Real-time relative resistance changes for the detection of throat swallowing.



Figure S7 Gestures corresponding to 26 English letters.



**Figure S8** Weight change curve of organohydrogel with ethylene glycol and without ethylene glycol over time.

| Sample                          | AA<br>/g | Starch /g | MXene<br>/mL | Ethylene<br>Glycol /mL | MBA /mg | H <sub>2</sub> O /mL | APS /mg |
|---------------------------------|----------|-----------|--------------|------------------------|---------|----------------------|---------|
| PAA                             | 4        | 0         | 0            | 3                      | 4       | 7                    | 5       |
| PAA/Starch (0:7)                | 4        | 0         | 1.5          | 3                      | 4       | 5.5                  | 5       |
| PAA/Starch (1:7)                | 4        | 0.5714    | 1.5          | 3                      | 4       | 5.5                  | 5       |
| PAA/Starch (2:7)                | 4        | 1.1428    | 1.5          | 3                      | 4       | 5.5                  | 5       |
| PAA/Starch (3:7)                | 4        | 1.7142    | 1.5          | 3                      | 4       | 5.5                  | 5       |
| PAA/Starch/MXene<br>(0 mg/ml)   | 4        | 1.1428    | 0            | 3                      | 4       | 7                    | 5       |
| PAA/Starch/MXene<br>(1.5 mg/ml) | 4        | 1.1428    | 1.5          | 3                      | 4       | 5.5                  | 5       |
| PAA/Starch/MXene<br>(2.5 mg/ml) | 4        | 1.1428    | 2.5          | 3                      | 4       | 4.5                  | 5       |
| PAA/Starch/MXene<br>(3.5 mg/ml) | 4        | 1.1428    | 3.5          | 3                      | 4       | 3.5                  | 5       |
| PAA/Starch/MXene<br>(4.5 mg/ml) | 4        | 1.1428    | 4.5          | 3                      | 4       | 2.5                  | 5       |
| PAA/Starch/MXene<br>(5.5 mg/ml) | 4        | 1.1428    | 5.5          | 3                      | 4       | 1.5                  | 5       |

Table S1 Sample compositions of the organohydrogels

PS: Concentration of MXene is 10 mg mL<sup>-1</sup>

| Hydrogels                                  | Fracture<br>strain (%) | Fracture<br>stress (MPa) | Toughness<br>(MJ m <sup>-3</sup> ) | Workable<br>strain<br>range (%) | Gauge<br>factor | Self-adhesive<br>ability | Anti-fatigue<br>ability | Freezing<br>tolerance<br>(°C) | Ref.         |
|--------------------------------------------|------------------------|--------------------------|------------------------------------|---------------------------------|-----------------|--------------------------|-------------------------|-------------------------------|--------------|
| Starch/PVA/AlCl <sub>3</sub> /[Emim]A<br>c | 567                    | 0.52                     | 1.42                               | 400                             | 5.93            | N/A                      | N/A                     | -20                           | [1]          |
| P(Am-DMC)-CMS                              | 411                    | 0.217                    | 0.43                               | 400                             | 5.73            | N/A                      | Yes                     | N/A                           | [2]          |
| St-PVA-GO-IL                               | 657.5                  | 0.64                     | 2.08                               | 500                             | 6.04            | N/A                      | Yes                     | -20                           | [3]          |
| STH                                        | 135                    | 0.06                     | N/A                                | 50                              | 0.98            | Yes                      | Yes                     | N/A                           | [4]          |
| Starch/PVA/EG/TA/CaCl <sub>2</sub>         | 606.8                  | 1.1                      | 2.56                               | 500                             | 2.51            | N/A                      | N/A                     | -32.2                         | [5]          |
| Starch/PVA/glycerol/CaCl <sub>2</sub>      | 790                    | 0.53                     | 1.99                               | 400                             | 3.42            | N/A                      | N/A                     | -29.8                         | [6]          |
| MMs-DN                                     | 1615                   | 0.483                    | N/A                                | 400                             | 3.7             | N/A                      | Yes                     | -40                           | [7]          |
| AA/Starch 98 %                             | 1290                   | 0.023                    | N/A                                | 500                             | 5.6             | Yes                      | Yes                     | N/A                           | [8]          |
| SPAE                                       | 567                    | 0.53                     | N/A                                | 400                             | 5.93            | N/A                      | N/A                     | -20                           | [9]          |
| PAA/Starch/MXene                           | 1237                   | 0.34                     | 2.40                               | 880                             | 14.19           | Yes                      | Yes                     | -30                           | this<br>work |

 Table S2 Comparison of comprehensive performances of the reported starch-based hydrogels

N/A is donated as 'not available' in the references.

## References

1. Lu, L.; Huang, Z.; Li, X.; Li, X.; Cui, B.; Yuan, C.; Guo, L.; Liu, P.; Dai, Q., A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Int J Biol Macromol 2022, 213, 791-803.

2. Gao, Y.; Zhang, Z.; Ren, X.; Jia, F.; Gao, G., A hydrogel sensor driven by sodium carboxymethyl starch with synergistic enhancement of toughness and conductivity. J Mater Chem B 2022, 10 (30), 5743-5752.

3. Li, X.; Zhang, S.; Li, X.; Lu, L.; Cui, B.; Yuan, C.; Guo, L.; Yu, B.; Chai, Q., Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors. Carbohydr Polym 2023, 320, 121262.

4. Zeng, S.; Zhang, J.; Zu, G.; Huang, J., Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr Polym 2021, 267, 118198.

5. He, L.; Ye, D.; Weng, S.; Jiang, X., A high-strength, environmentally stable, self-healable, and recyclable starch/PVA organohydrogel for strain sensor. Eur Polym J 2022, 181, 111650.

6. Lu, J.; Gu, J.; Hu, O.; Fu, Y.; Ye, D.; Zhang, X.; Zheng, Y.; Hou, L.; Liu, H.; Jiang, X., Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. J Mater Chem A 2021, 9 (34), 18406-18420.

7. Liu, S.; Wang, X.; Peng, Y.; Wang, Z.; Ran, R., Highly stretchable, strainsensitive, and antifreezing macromolecular microsphere composite starch-based hydrogel. Macromol Mater Eng 2021, 306 (9), 2100198.

8. Zhou, Y.; Fei, X.; Tian, J.; Xu, L.; Li, Y., Biomass-based hydrogels with high ductility, self-adhesion and conductivity inspired by starch paste for strain sensing. Int J Biol Macromol 2022, 222 (Pt A), 1211-1220.

9. Lu, L.; Huang, Z.; Li, X.; Li, X.; Cui, B.; Yuan, C.; Guo, L.; Liu, P.;

Dai, Q., A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Int J Biol Macromol 2022, 213, 791-803.