SUPPORTING INFORMATION

Magneto-controlled electrochemical immunosensing platform to assess the senescence-associated GDF-15 marker in colorectal cancer

Sandra Tejerina-Miranda^a, Víctor Pérez-Ginés^a, Rebeca M. Torrente-Rodríguez^a, María Pedrero^a, Ana Montero-Calle^b, José M. Pingarrón^a, Rodrigo Barderas^{b,*}, Susana Campuzano^{a,*}

^aDepartamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040-Madrid, Spain

^bChronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220-Madrid. Spain

* to whom correspondence should be addressed (<u>r.barderasm@isciii.es;</u> <u>susanacr@quim.ucm.es</u>)

CONTENTS	PAGE
Fig. S1	S2
Table S1	S3
References	S4

Fig. S1. Amperometric responses provided by the immunoplatforms prepared each control day using the stored CAb-MBs (in filtered PBS at 4 °C) after their preparation (day 0 is the CAb-MBs preparation day) for 0 (white bars) and 2500 pg mL⁻¹ GDF-15 (blue bars). Control limits (dashed black lines) were set as \pm 3s of the mean value of the measurements provided by three bioplatforms prepared on day 0.

Electrode	Linear Range	LOD	Assay time	Application	Ref
			1 h (AuPtCu NFs and SWCNTs: 1 h; AuPtCu		
GCE	$1.0 \text{ pg mL}^{-1}-$	1.0 pg mL ⁻¹ – 50 ng mL ⁻¹ 0.825 pg mL^{-1}	NFs-SWCNTs@MoS2-rGO (A@M): 25 h;	Human serum (CVDs)	[1]
	50 ng mL^{-1}		A@M/CAb: 12 h; A@M/CAb/BSA: 1 h;		
			A@M/CAb/BSA/GDF-15:1 h)		
GCE	1.5 pg mL^{-1} –	0.9 pg mL^{-1}	3 h 30 min (MoS ₂ /AuPtPd NDs:1 h 45 min;	Human blood (CVDs)	[2]
	$1.5 \ \mu g \ mL^{-1}$		MoS ₂ /AuPtPd-DAb:10 h)		
GCE	100 C I -1	42.23 fg mL ⁻¹	3 h (PANI/Pd NPs: 16 h 50 min; ZnGa ₂ O ₄ /Au	Human serum	[3]
	100 Ig mL^{-1}		NPs/Ab ₂ : 25 h 7min; CAb- PANI/PdNPs:		
	10 ng mL ⁻¹	overnight)	(CvDs)		
GCE	500 fg mL ⁻¹ – 50 ng mL ⁻¹ 0.21		3 h 40 min (Au TNPs: 15 h; GDY-Au TNPs:6 h	Human serum (CVDs)	[4]
		0.212 pg mL^{-1}	46 min; AuPtCu HNFs:10 h 35 min; MoS ₂ : 24 h		
			26 min; MoS ₂ -AuPtCu HNFs-Ab ₂ : 12 h 45 min)		
SPCE	$140-10000 \text{ pg mL}^{-1}$	42 pg mL^{-1}	1 h 15 min (CAb-MBs: 2 h 40 min)	Human plasma	This work

Table S1. Relevant characteristics of electrochemical immunosensors and immunoassays reported for the determination of GDF-15.

Au TNPs: Au triangular nanoprisms; BSA: bovine serum albumin; CAb: capture antibody; DAb: detector antibody; CVDs: cardiovascular diseases; GCE: glassy carbon electrode; MoS_2 -AuPtCu HNF: AuPtCu hexagonal metal nanoframes loaded onto molybdenum disulfide nanosheets; GDY: graphyne; GDY-Au TNPs: Au triangular nanoprisms hybridized with graphyne; MBs: magnetic beads; MoS_2 /AuPtPd NDs: MoS_2 /AuPtPd nanodendrite; NFs: nanoflowers; PANI/PdNPs: hollow polyaniline microtubules decorated with Pd nanoparticles; rGO: reduced graphene oxide; SPCEs: screen-printed carbon electrodes; SWCNTs: single-wallet carbon nanotubes; $ZnGa_2O_4$ /Au NPs: peony-like zinc gallinate coupled with Au nanoparticles.

References

- [1] Y. Jiao, Z. Huang, M. Chen, X. Zhou, H. Lu, B. Wang and X. Dai, *Anal. Meth.*, 2022, 14, 1420–1429.
- [2] M. Chen, L. Zhao, D. Wu, S. Tu, C. Chen, H. Guo and Y. Xu, Anal. Chim. Acta, 2022, 1223, 340194.
- [3] C. Chen, J. Kang, S. Wang, S. Chen, H. Guo and M. Chen, Mikrochim. Acta, 2023, 190, 92.
- [4] M. Chen, Y. Jiao, C. Chen, Y. Wang, H. Lu, and X. Dai, *Microchem. J.*, 2023, 193, 109150.