Supplementary Information

for

High Reversible Li/Li₂S₃ Batteries with an Advanced Cathode Structure

Zhong Wang,^{a*} Fangmin Ye,^{b*} Zeyun Ma,^a Yongming Jiang,^b and Meinan Liu^{c*}

^a Jiyang College of Zhejiang A&F University, Zhuji, 311800, China

E-mail: 20120034@zafu.edu.cn

^b Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China. E-mail: fmye2013@sinano.ac.cn

^c i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou
215123, China. E-mail: mnliu2013@sinano.ac.cn

Figure S1. Elementary Mapping for NCNT. (a) SEM image;(b) Mapping for C element; and (c)

Mapping for N element.

Figure S2. SEM images for various samples. (a) NCNT; (b) pristine CNT; (c) and (d) crosssection and top view of NG coated PP separator, respectively;(e) and (f) cross-section and top view of CNT@PP separator, respectively.

Figure S3. High-resolution XPS S 2p spectra for Li_2S_3 .

Figure S4. Schematic of battery configurations for comparison: I) Li_2S_3 @CNT cathode, commercial PP separator and Li anode; II) Li_2S_3 @CNT cathode, CNT@PP separator and Li anode; III) Li_2S_3 @CNT cathode, NG@PP separator and Li anode.

Figure S5. SEM images for cycled NCNT cathode. (a) and (b) for 1^{st} cycled cathode and (c) and (d)

for 200th cycled cathode.

Figure S6. Electrochemical performance for Li-free and minor Li matched Li_2S_3 batteries.