Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supporting Information

CoPd nanoalloy embedded N-doped porous carbon catalyst for the selective reduction and reductive amination of levulinic acid using formic acid in water

Ashish Kumar Kar, Arzoo Chauhan, and Rajendra Srivastava* Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India

*Email: rajendra@iitrpr.ac.in; Phone: +91-1881-232064

Materials and reagents

Levulinic acid (98%), melamine (99%), benzyl amine (99%) and metal salts were purchased from Sigma-Aldrich. Formic acid (>98%), paraformaldehyde (96%), were purchased from Tokyo Chemical Industry Co., Ltd., S D Fine-Chem Limited, and Spectrochem Pvt. Ltd., respectively. All other solvents were obtained from Merck. All the chemicals were used without any further purification.

Catalyst characterization

Powder X-ray diffraction (XRD) patterns were recorded on Rigaku Mini flex III diffractometer (30 kV and 10 mA). The surface area of the catalyst was determined by Nitrogen sorption measurements performed at 77 K by Quantachrome Instruments, AutosorbiQ volumetric adsorption analyzer. The sample was degassed at 200 °C for 3 h in the degassing port of the adsorption apparatus. The surface area of the catalyst was calculated from the adsorption data points obtained for P/P0 between 0.05-0.3 using the Branauer-Emmette-Teller (BET) equation. The metal content in the catalyst was determined by Agilent's microwaveplasma atomic emission spectrometer (MP-AES). High-resolution transmission electron microscopy (HRTEM) images were taken on a JEOL-2010 transmission electron microscope operating at 200 kV. The surface composition of the catalyst was investigated by X-ray photoelectron spectroscopy (XPS) analysis by an XPS system PHI 5000 VersaProbeII (ULVAC- PHI, INC, Japan) with a microfocus (100 µm, 25 W, 15 KV) monochromatic Al-K α source (hv = 1486.6 eV), a hemispherical analyzer and a multichannel detector. The CO₂ temperature-programmed desorption (CO₂-TPD) technique was used for the total acidity measurements on a Quantachrome, CHEMBETTMTPR/TPD instrument. The samples were preheated at 200 °C at a heating rate of 10 deg/min under continuous He flow for 30 min. Similarly, H₂ temperature-programmed desorption (H₂-TPD) technique was used for the extent of hydrogen consumption efficiency of all the carbonized catalyst. The samples were preheated at 200 °C at a heating rate of 10 deg/min under continuous He flow for 30 min. Then, the sample cell was cooled to 50 °C and the either CO₂ or H₂ gas was adsorbed by flowing the gas for one h in the sample cell with a flow rate of 10 mL/min. The excess or physically adsorbed gas was removed by He flow (50 mL/min) for 30 min. Finally, the amount of desorbed gas was monitored by a temperature-controlled device (TCD) as the function of temperature. The DRIFT FT-IR was conducted using a Thermofisher instrument using acetone as the probe molecule.

Experimental

Procedure for LA to GVL transformation using FA as a hydrogen source

The catalytic activity was investigated using formic acid as a hydrogen source via a catalytic transfer hydrogenation pathway. In a typical reaction, 1 mmol LA, 5 mmol formic acid, 30 mg catalyst, and 3 mL H₂O (as a solvent) were charged into a 10 mL Teflon liner and secured with a stainless-steel jacket. The reaction proceeded in an oil bath maintained at 160 °C with a stirring rate of 400 rpm. After the reaction, the reaction mixture was filtered and centrifuged to separate the catalyst. The organic phase of the reaction was carefully extracted with ethyl acetate, and reactant conversion & product selectivity was monitored using a gas chromatograph (GC, Yonglin 6100; BP-5; 30 m × 0.25 mm × 0.25 mm). The product was confirmed using GC-MS (Shimadzu GCMS-QP 2010 Ultra Rtx-5 Sil Ms; 30 m × 0.25 mm × 0.25 mm).

Catalytic reaction procedure for the reductive amination of LA to pyrrolidone using HCOOH

The reductive amination of LA with benzylamine was carried in the same manner as it was done for LA. In a typical reaction, 1 mmol LA, 1 mmol amine, 3 mmol formic acid, 30 mg catalyst, and 3 mL H₂O were charged into a 10 mL Teflon liner, with a stainless-steel jacket. The reaction was conducted in an oil bath maintained at 160 °C with a stirring rate of 400 rpm. After the reaction, the reaction mixture was filtered and centrifuged to separate the catalyst. The organic phase of the reaction was carefully extracted with ethyl acetate, and reactant conversion and product selectivity were monitored using gas chromatograph, and the product was confirmed using GC-MS.

LA conversion (%) =
$$\frac{\text{moles of } LA_{(\text{initial})} - \text{moles of } LA_{(\text{final})}}{\text{moles of } LA_{(\text{initial})}} \times 100$$

Product yield (%) =
$$\frac{\text{moles of product formed}}{\text{moles of } LA_{(initial)}} \times 100$$

Product selectivity (%) = $\frac{\text{Product yield}}{\text{LA conversion}} \times 100$

The reactions were conducted initially at different stirring speeds (100 rpm to 400 rpm). The reactant conversions were increased with an increase in the stirring rate up to 600 rpm. Above that rate, no increase in the reactant conversion was recorded. It suggests that above and equal to 600 rpm, the mass transfer was overcome, and only the kinetic and thermodynamic parameters will influence the reaction.

Catalyst	Co (Wt %)	Pd (Wt %)
Co ₈ Pd ₂ @N-C	7.1	1.6
Co ₉ Pd ₁ @N-C	8.0	0.85
Co ₇ Pd ₃ @N-C	6.2	2.1
Co@N-C	8.9	-
Pd@N-C	-	7.8
Co ₈ Pd ₂ /AC	7.2	1.7
Co ₈ Pd ₂ /N-C	7.3	1.7

Table S1. (a) Metal contents determined from MP-AES.

(b) Surface elemental composition determined from XPS.

Catalyst	C (%)	N (%)	O (%)	Co (%)	Pd (%)
Co ₈ Pd ₂ @N-C	^a 90.1, ^b 88.7	^a 3.1, ^b 3.1	^a 3.7, ^b 8.2	^a 2.6	^b 0.5
Co@N-C	^a 88.9	°3.2	^a 4.1	^a 3.8	-
Pd@N-C	^a 90.6	^a 2.8	a3.3	_	3.3

 Table S2. Physicochemical properties of the catalysts.

Catalyst	S _{BET} (m ² g ⁻¹)	Total pore vol. (cm ³ g ⁻¹)	Avg. pore size (nm)
Co ₈ Pd ₂ @N-C	473	0.59	20.1
Co ₈ Pd ₂ @N-C _{no TMB}	311	0.32	16.1
^a Co ₈ Pd ₂ @N-C	ª452	^a 0.54	°20.0

^aSpent catalyst

	Catalyst	Reaction conditions	Conversion	Select.	TOF (h ⁻¹)	Ref.
			(%)	(%)		
1	2.5%	LA (5 mmol), FA (2.5	73	>99	2.5	1
	Ru/ZrO ₂	mmol), PF (2.5 mmol)				
		H ₂ O (20 mL), catalyst				
		(0.5g), He (1 atm), time				
		(12 h), temp (150 °C).				
2	Ru/C	LA (1 g), FA (2 ml), H ₂ O	81	70.3	4.7	2
		(30 mL), catalyst (0.6 g),				
		time (5 h), temp (190 °C).				
3	10% Pd/C	LA (2 mmol), FA (2	9	17	1.9	3
		mmol), catalyst (0.02 g),				
		H_2O (1 mL), time (5 h),				
		temp (150 °C).				
4	Ru/U-C3N4	LA (1 mmol), catalyst	100	99.8	21.0	4
		(40 mg), 2-PrOH (5 mL),				
		H_2O (5 wt %), time (12 h),				
		temp (100 °C), N _{2.}				
5	Mn ₂ Co _{0.1} O _x	15 mL LA	83.4	70.0	0.63	5
		(0.1 mol/L) + FA				
		(1.0 mol/L), catalyst				
		(0.2 g), time (20 h),				
		temp (230 °C),				
		N ₂ (1 MPa).				
6	Ru(2%)NC	LA (1 mmol), FA (7	~100	~100	13.9	6
	nanoflakes	mmol) catalyst (20 mg),				
		H ₂ O (2 mL), time (20 h),				
		temp (140 °C).				
7.	Au–Ni	LA (1 g), formic acid (0.4	89	Yield=86	-	7
	nanoalloy/γ-	mL), catalyst (0.6 g), time				

Table S3. (Comparative tab	le HCOOH	[mediated LA	A to GVL.
-------------	-----------------	----------	--------------	-----------

	Al ₂ O ₃	(2 h), temperature (190				
		°C).				
8.	Pt/MP-ZrO ₂	LA (0.19 mmol cm ^{-3}), FA	97	Yield=90	-	8
		$(0.59 \text{ mmol cm}^{-3})$, catalyst				
		(0.3 g), time (24 h),				
		temperature (240 °C).				
9.	ZnAl mixed	FA/LA (5/1), time (6 h)	87	Yield=90	-	9
	oxide	temperature (140 °C).				
10.	Co ₈ Pd ₂ @N-C	LA (1 mmol), formic acid	~100	99.3	2.71	This
		(5 equiv.), catalyst (30				work
		mg), H ₂ O (3 mL), time (9				
		h), temperature (150 °C).				

Table S4. Comparative table HCOOH mediated LA reductive amination for pyrrolidone synthesis.

S.N.	Catalyst	LA:Amine	Reaction conditions	Yield (%)	Ref.
1	Au/ZrO ₂	1:1	FA (2.5 mmol), H ₂ O (0.35	97	10
			mL), Au (0.05 mol %),		
			time (12 h), temp (130		
			°C).		
2	Ir catalyst-1a	1:2.7	LA (2 mmol), FA (2.5	88	11
			mmol), catalyst (0.02 g),		
			H ₂ O (3 mL), time (12 h),		
			temp (80 °C).		
3	[Ru ₃ (CO) ₁₂]-derived	1:2	FA (6.54 mmol), catalyst	93	12
	Ru-NPs		(0.2 g), time (12 h), temp		
			(120 °C).		
4	Ru@GOIL	1:1	FA (2 mmol), catalyst	96	13
			(0.02 g), MeOH (5 mL),		
			time (18 h), temp (130		
			°C).		
5	Chloro(p-cymene)	1:1	FA (1 eqiv), catalyst (0.2	95	14

	ruthenium(II)dimer		mol%), time (12 h), temp		
	with PtBu ₃ ligand		(120 °C).		
6	$Fe_3(CO)_{12}$	1:4	FA (4 eq), LA=1.65mmol,	90	15
			catalyst (4 mol%), temp		
			(180 °C), time (15 h).		
7	Co ₈ Pd ₂ @N-C	(1:1)	FA (3 equiv.) (catalyst (30	91.1	This
			mg), H ₂ O (3 mL), time (8		work
			h), temperature (160 °C).		

S

Fig. S1 Raman spectra of all the carbonized catalysts.

Fig. S2 XPS surface survey analysis of Co₈Pd₂@N-C, Co@N-C, and Pd@N-C, respectively.

Fig. S3 High-resolution XPS spectra of O 1s of Co₈Pd₂@N-C.

Fig. S4 High-resolution XPS spectra of C 1s, N 1s, and O 1s of Co@N-C and Pd@N-C, respectively.

Fig. S5 (a) CO₂-TPD profiles of Co₈Pd₂@N-C, (b) H₂-TPD profiles of Co₈Pd₂@N-C, Co@N-C and Pd@N-C respectively.

Fig. S6 Influence of the catalyst amount in (a) LA to GVL transformation, and (b) reductive amination of LA.

Fig. S7 (a) Recyclability test and (b) Hot-filtration for LA to GVL transformation using Co- $_{8}Pd_{2}@N-C$.

Fig. S8 (a) Recyclability test and (b) Hot-filtration for the reductive amination of LA using $Co_8Pd_2@N-C$.

Fig. S9 (a) PXRD of fresh and reuse $Co_8Pd_2@N-C$, (b) N_2 adsorption-desorption isotherms, and (c) TEM image of spent $Co_8Pd_2@N-C$.

References

- Y. Gao, H. Zhang, A. Han, J. H. Wang, R. E. -S. Tok, S. Jaenicke, and G. -K Chuah, *ChemistrySelect*, 2018, 3, 1343–1351.
- A. M. Ruppert, M. Jędrzejczyk, O. S. Płatek, N. Keller, A. S. Dumon, C. Michel, and P. Sautet, *Green Chem.*, 2016, 18, 2014–2028.
- 3. P. A. Son, S. Nishimura, and K. Ebitani, RSC Adv., 2014, 4, 10525–10530.
- 4. B. Cai, Y. Zhang, and J. Feng, Renew. Energy, 2021, 177, 652–662.
- J. Wang, G. Zhang, M. Liu, Q. Xia, X. Yu, W. Zhang, J. Shen, C. Yang, X. Jin, *Chem. Eng. Sci.*, 2020, 222, 1157215–1157225.
- 6. A. Chauhan, A. K. Kar, and R. Srivastava, Appl. Catal. A: Gen., 2022, 636, 118580-118591.
- A. M. Ruppert, M. Jędrzejczyk, N. Potrzebowska, K. Kaźmierczak, M. Brzezińska, O. S.-Płatek, C. Michel and J. Gramsa, *Catal. Sci. Technol.*, 2018, 8, 4318–4331.
- M. Al-Naji, M. Popova, Z. Chen, N. Wilde, and R. Glaser, ACS Sustainable Chem. Eng., 2020, 8, 393–402.
- M. N. E. H. Belguendouz, J. Gancedo, P. Rapado, D. Ursueguía, Y. Patino, L. Faba, A. Bahmani, E. Díaz, and S. Ordonez, *Chem. Eng. J.* 2021, 414, 128902–128913.
- 10. X. Du, L. He, S. Zhao, Y. Liu, Y. Cao, and H. He, Angew. Chem. Int. Ed., 2011, **50**, 7815–7824.
- Y. Wei, C. Wang, X. Jiang, D. Xue, J. Li, and J. Xiao, *Chem. Commun.*, 2013, 49, 5408–5410.
- 12. C. Oritz-Cervantes, M. Flores-Alamo, and J. García, Tetrahedron Lett., 2016, 57, 766-771.
- 13. A. Raut, V. Shende, T. Sasaki, and B. Bhanage, J. Catal., 2020, 383, 206-214.
- 14. Y. Huang, J. Dai, X. Deng, Y. Qu, Q. Guo, and Y. Fu, ChemSusChem, 2011, 4, 1578-1581.
- 15. G. Metzker, R. Dias, and A. Burtoloso, ChemistrySelect, 2018, 3, 368-372.