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Table S1. Correlation coefficients for calculating test method D86 correlated data from test method 
D2887 data. 

Coefficients for the conversion of D2887 data to D86 temperatures using equation (12) in the 
main article were not reproduced here to comply with ASTM copyright requirements. The 
parameters can be obtained from the ASTM publication (reference 32 in the main article): 
 
Standard test method for boiling range distribution of petroleum fractions by gas 
chromatography. ASTM D2887 – 19a. ASTM International, Pennsylvania. Table X4.1. 

 

Table S2. GC×GC-TOFMS-FID measured mass percentages of compounds found in the jet range fuel 
from hydrotreated ZSM-5 CFP oil.  

Compound namea CAS # Formula Mass % 
Cyclohexane, methyl- 108-87-2 C7H14 0.087 
Cyclohexane, 1,3-dimethyl-, cis- 638-04-0 C8H16 0.161 
Cyclohexane, 1,2,3-trimethyl-, (1.alpha.,2.beta.,3.alpha.)- 1678-81-5 C9H18 0.941 
Heptane, 2,4-dimethyl- 2213-23-2 C9H20 0.223 
Cyclohexane, ethyl- 1678-91-7 C8H16 1.576 
Octane, 2-methyl- 3221-61-2 C9H20 0.366 
Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- 7667-60-9 C9H18 0.232 
Octane, 2,3-dimethyl- 7146-60-3 C10H22 0.224 
Cyclohexane, 1,2,4-trimethyl- 2234-75-5 C9H18 0.370 
Nonane 111-84-2 C9H20 0.447 
Cyclohexane, 1,2,3-trimethyl- 1678-97-3 C9H18 2.868 
Cyclohexane, 1-ethyl-4-methyl-, cis- 4926-78-7 C9H18 3.797 
Cyclohexane, (1-methylethyl)- 696-29-7 C9H18 0.785 
Octane, 4-ethyl- 15869-86-0 C10H22 0.634 
Cyclohexane, propyl- 1678-92-8 C9H18 9.829 
Octane, 3,5-dimethyl- 15869-93-9 C10H22 1.184 
Nonane, 3-methyl- 005911-04-6 C10H22 0.110 
Cyclohexane, 1-ethyl-1,3-dimethyl-, trans- 62238-29-3 C10H20 0.507 
Bicyclo[2.2.1]heptane, 2-ethyl- 2146-41-0 C9H16 2.537 
Cyclopentane, 1-methyl-3-(2-methylpropyl)- 29053-04-1 C10H20 8.178 
Decane 124-18-5 C10H22 0.813 
Cyclohexane, 1-methyl-2-propyl- 4291-79-6 C10H20 8.322 
1H-Indene, octahydro-, cis- 4551-51-3 C9H16 6.611 
Cyclohexane, 1-ethyl-1-methyl- 4926-90-3 C9H18 3.162 
Pentalene, octahydro-2-methyl- 3868-64-2 C9H16 3.017 
Cyclohexane, 1,2-diethyl-, cis- 824-43-1 C10H20 0.451 
Cyclopentane, 2-isopropyl-1,3-dimethyl- 32281-85-9 C10H20 0.952 
Cyclohexane, butyl- 1678-93-9 C10H20 2.151 
Cyclohexane, 2-ethyl-1,3-dimethyl- 7045-67-2 C10H20 0.161 
1,1'-Bicyclopentyl 1636-39-1 C10H18 1.611 



Bicyclo[5.3.0]decane (cis) 16189-46-1 C10H18 0.351 
Cyclohexane, 1-ethyl-2-propyl- 62238-33-9 C11H22 4.822 
Naphthalene, decahydro-, trans- 493-02-7 C10H18 0.807 
(2-Methylbutyl)cyclohexane 54105-77-0 C11H22 0.150 
cis-Decalin, 2-syn-methyl- 14398-72-2 C11H20 3.649 
Naphthalene, decahydro-2-methyl- 2958-76-1 C11H20 5.801 
Cyclohexane, pentyl- 4292-92-6 C11H22 1.464 
Spiro[4.5]decane 176-63-6 C10H18 0.688 
1-Methyldecahydronaphthalene 2958-75-0 C11H20 3.258 
Naphthalene, decahydro-2,6-dimethyl- 1618-22-0 C12H22 3.167 
Cyclohexane, 1-methyl-4-(1-methylbutyl)- 54411-00-6 C12H24 1.242 
Dodecane 112-40-3 C12H26 0.583 
Cyclopentylcyclohexane 1606-08-2 C11H20 0.722 
Cyclohexane, hexyl- 4292-75-5 C12H24 0.847 
Naphthalene, 2-ethyldecahydro- 1618-23-1 C12H22 0.506 
Spiro[5.6]dodecane 181-15-7 C12H22 0.173 
1,1'-Bicyclohexyl 92-51-3 C12H22 0.284 
Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- 473-55-2 C10H18 1.411 
Perhydrophenalene, (3a.alpha., 6a.alpha., 9a.alpha., 
9b.beta.)- 40250-64-4 C13H22 2.778 
Cyclohexane, (cyclopentylmethyl)- 4431-89-4 C12H22 0.142 
Benzene, 1,3-dimethyl- 108-38-3 C8H10 0.681 
Benzene, propyl- 103-65-1 C9H12 0.174 
Benzene, 1-ethyl-4-methyl- 622-96-8 C9H12 0.759 
Benzene, 1,2,3-trimethyl- 526-73-8 C9H12 0.191 
Benzene, 1-methyl-3-propyl- 1074-43-7 C10H14 0.219 
Indane 496-11-7 C9H10 0.413 
1H-Indene, 2,3-dihydro-2-methyl- 824-63-5 C10H12 0.056 
Indan, 1-methyl- 767-58-8 C10H12 0.160 
1H-Indene, 2,3-dihydro-4-methyl- 824-22-6 C10H12 0.927 
Naphthalene, 1,2,3,4-tetrahydro- 119-64-2 C10H12 0.704 
1H-Indene, 2,3-dihydro-1,3-dimethyl- 4175-53-5 C11H14 0.092 
1H-Indene, 2,3-dihydro-4,7-dimethyl- 6682-71-9 C11H14 0.472 

a Components were identified based on mass spectral matching using LECO ChromaTOF® software [1] 
and the NIST 2014 Mass Spectral Library [2], characteristic spectral features, and retention times. 

 

Table S3. GC×GC-TOFMS-FID measured mass percentages of compounds found in the jet range fuel 
from hydrotreated Pt/TiO2 CFP oil.  

Compound namea CAS # Formula Mass % 
Cyclohexane, 1,2-dimethyl-, cis- 2207-01-4 C8H16 0.195 
Cyclohexane, ethyl- 1678-91-7 C8H16 3.504 



Ethylbenzene 100-41-4 C8H10 0.100 
Benzene, 1,3-dimethyl- 108-38-3 C8H10 0.147 
o-Xylene 95-47-6 C8H10 0.097 
Indane 496-11-7 C9H10 0.501 
Naphthalene, 1,2,3,4-tetrahydro- 119-64-2 C10H12 0.149 
Octane, 2-methyl- 3221-61-2 C9H20 1.123 
1H-Indene, 2,3-dihydro-4-methyl- 824-22-6 C10H12 0.464 
Benzene, 1-ethyl-2-methyl- 611-14-3 C9H12 0.084 
Benzene, 1-ethyl-4-methyl- 622-96-8 C9H12 0.478 
Indan, 1-methyl- 767-58-8 C10H12 0.161 
Benzene, propyl- 103-65-1 C9H12 0.573 
Benzene, 1,2,3-trimethyl- 526-73-8 C9H12 0.206 
Naphthalene, 1,2,3,4-tetrahydro-5-methyl- 2809-64-5 C11H14 0.125 
Pentalene, octahydro- 694-72-4 C8H14 0.044 
1H-Indene, 2,3-dihydro-1,3-dimethyl- 4175-53-5 C11H14 0.171 
Benzene, 1-methyl-3-(1-methylethyl)- 535-77-3 C10H14 0.089 
Benzene, (1-methylpropyl)- 135-98-8 C10H14 0.096 
Benzene, 1-methyl-3-propyl- 1074-43-7 C10H14 0.275 
Cyclohexane, 1,2,4-trimethyl- 2234-75-5 C9H18 0.403 
Benzene, butyl- 104-51-8 C10H14 0.113 
Cyclohexane, 1,2,3-trimethyl- 1678-97-3 C9H18 2.097 
Cyclohexane, 1-ethyl-2-methyl- 3728-54-9 C9H18 3.203 
Cyclohexane, 1-ethyl-4-methyl-, cis- 4926-78-7 C9H18 2.998 
Nonane 111-84-2 C9H20 0.655 
1H-Indene, octahydro-, cis- 4551-51-3 C9H16 8.591 
Bicyclo[2.2.1]heptane, 2-ethyl- 2146-41-0 C9H16 1.244 
Cyclohexane, (1-methylethyl)- 696-29-7 C9H18 0.576 
Spiro[4.5]decane 176-63-6 C10H18 0.327 
Cyclohexane, propyl- 1678-92-8 C9H18 21.290 
Naphthalene, decahydro-, trans- 493-02-7 C10H18 2.728 
9-Methylbicyclo[3.3.1]nonane 25107-01-1 C10H18 1.391 
Bicyclo[5.3.0]decane (cis) 16189-46-1 C10H18 2.428 
Perhydrophenalene, (3a.alpha., 6a.alpha., 9a.alpha., 
9b.beta.)- 40250-64-4 C13H22 0.215 
Cyclopentylcyclohexane 1606-08-2 C11H20 0.242 
Pentalene, octahydro-2-methyl- 3868-64-2 C9H16 0.189 
Naphthalene, decahydro-2-methyl- 2958-76-1 C11H20 2.759 
cis-Decalin, 2-syn-methyl- 14398-72-2 C11H20 5.688 
1,1'-Bicyclohexyl 92-51-3 C12H22 0.201 
1-Methyldecahydronaphthalene 2958-75-0 C11H20 1.319 
Cyclohexane, (cyclopentylmethyl)- 4431-89-4 C12H22 0.338 
Naphthalene, 2-ethyldecahydro- 1618-23-1 C12H22 1.442 
Cyclohexane, 1,2-diethyl-, cis- 824-43-1 C10H20 2.090 



1-Methyl-4-(1-methylethyl)-cyclohexane 99-82-1 C10H20 1.230 
Cyclohexane, 1-ethyl-1-methyl- 4926-90-3 C9H18 3.816 
Cyclohexane, 1,1'-(1,2-ethanediyl)bis- 3321-50-4 C14H26 0.098 
Cyclohexane, 1-ethyl-2-methyl-, cis- 4923-77-7 C9H18 1.032 
Cyclohexane, butyl- 1678-93-9 C10H20 3.431 
Cyclohexane, 1-methyl-2-propyl- 4291-79-6 C10H20 5.324 
Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- 473-55-2 C10H18 0.379 
Cyclohexane, 1-ethyl-2-propyl- 62238-33-9 C11H22 2.473 
Cyclohexane, hexyl- 4292-75-5 C12H24 2.228 
(2-Methylbutyl)cyclohexane 54105-77-0 C11H22 1.405 
Cyclopentane, 1,2-dipropyl- 91242-57-8 C11H22 0.502 
Cyclohexane, (2-methylpropyl)- 1678-98-4 C10H20 0.301 
Nonane, 3-methyl- 005911-04-6 C10H22 0.276 
Nonane, 2-methyl- 871-83-0 C10H22 0.732 
Decane 124-18-5 C10H22 1.699 
Cyclohexane, 2-ethyl-1,3-dimethyl- 7045-67-2 C10H20 1.318 
Cyclopentane, 1-methyl-3-(2-methylpropyl)- 29053-04-1 C10H20 1.532 
Cyclopentane, 2-isopropyl-1,3-dimethyl- 32281-85-9 C10H20 0.895 
Tridecane 629-50-5 C13H28 0.219 

a Components were identified based on mass spectral matching using LECO ChromaTOF® software [1] 
and the NIST 2014 Mass Spectral Library [2], characteristic spectral features, and retention times. 

 

Table S4 can be found in the accompanying Excel file.  

 

Table S5. Composition matrix of jet range fuel from hydrotreated ZSM-5 CFP oil. Values (in mass 
percent) were used for the Shi et al. method [4] 

Classa C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 
1 0 0 0.447 0.814 0 0.583 0 0 0 0 0 0 0 
2 0 0 0.366 0.744 0 0 0 0 0 0 0 0 0 
3 0 0 0.223 1.408 0 0 0 0 0 0 0 0 0 
4 0.0874 1.576 10.614 2.151 1.464 0.847 0 0 0 0 0 0 0 
5 0 0.161 11.371 18.571 4.972 1.242 0 0 0 0 0 0 0 
6 0 0 12.165 4.869 13.43 4.272 2.778 0 0 0 0 0 0 
7 0 0 0.174 0 0 0 0 0 0 0 0 0 0 
8 0 0.681 0.949 0.219 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0.413 1.847 0.564 0 0 0 0 0 0 0 0 
aClasses are defined in the description of the Shi et al. methods below. 

 



Table S6. Composition matrix of jet range fuel from hydrotreated Pt/TiO2 CFP oil. Values (in mass 
percent) were used for the Shi et al. method [4] 

Classa C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 
1 0 0 0.655 1.699 0 0 0.219 0 0 0 0 0 0 
2 0 0 1.123 1.008 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 3.504 21.866 3.733 0 2.228 0 0 0 0 0 0 0 
5 0 0.195 13.549 12.39 4.379 0 0 0 0 0 0 0 0 
6 0 0.0445 10.023 7.254 10.009 1.981 0.215 0.0979 0 0 0 0 0 
7 0 0.1 0.573 0.113 0 0 0 0 0 0 0 0 0 
8 0 0.244 0.767 0.461 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0.501 0.774 0.296 0 0 0 0 0 0 0 0 
aClasses are defined in the description of the Shi et al. methods below. 

 

Table S7. Composition matrix of jet range fuel from hydrotreated ZSM-5 CFP oil. Values (in mass 
percent) were used for the Vozka et al. method [6] 

Classa C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 
1 0 0 0.447 0.814 0 0.583 0 0 0 0 0 0 0 0 
2 0 0 0.589 2.152 0 0 0 0 0 0 0 0 0 0 
3 0.0874 1.737 21.985 20.722 6.435 2.088 0 0 0 0 0 0 0 0 
4 0 0 12.165 4.869 13.430 4.272 2.778 0 0 0 0 0 0 0 
5 0 0.681 1.124 0.219 0 0 0 0 0 0 0 0 0 0 
6 0 0 0.413 1.847 0.564 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

aClasses are defined in the description of the Vozka et al. methods below. 

 

Table S8. Composition matrix of jet range fuel from hydrotreated Pt/TiO2 CFP oil. Values (in mass 
percent) were used for the Vozka et al. method [6] 

Classa C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 
1 0 0 0.655 1.699 0 0 0.219 0 0 0 0 0 0 0 
2 0 0 1.123 1.008 0 0 0 0 0 0 0 0 0 0 
3 0 3.699 35.415 16.123 4.379 2.228 0 0 0 0 0 0 0 0 
4 0 0.0445 10.023 7.254 10.009 1.981 0.215 0.0979 0 0 0 0 0 0 
5 0 0.344 1.340 0.574 0 0 0 0 0 0 0 0 0 0 
6 0 0 0.501 0.774 0.296 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

aClasses are defined in the description of the Vozka et al. methods below. 



Description of GC x GC analysis method 

Detailed characterization of the SAF fractions was conducted by comprehensive two-dimensional gas 
chromatography with simultaneous time-of-flight mass spectrometry and flame ionization detection 
(GCxGC TOFMS-FID). Analysis was conducted using a LECO Pegasus 4D system (LECO Corp., St. Joseph, 
MI) [1] equipped with liquid nitrogen cooled thermal modulator and a post column flow splitter. Method 
parameters are shown in Table S9. Samples were injected without dilution for GC analysis. Components 
were tentatively identified based on mass spectral matching using LECO ChromaTOF® software [1] and 
the NIST 2014 library of spectra [2]. Library matches of 80% or higher were considered strong matches 
while matches below 70% were considered suspect. For the ZSM-5 CFP, HT fuel and the Pt/TiO2 CFP, HT 
fuel approximately 15 wt% and 5 wt% of the matches respectively had similarities of <80%, but all 
matches had similarities >75% for both samples. Compounds which could not be positively identified as 
an isomer were assigned a compound class based on characteristic spectral features and second 
dimension retention time comparison with a given class. In many cases, genuine standards are not 
available for verification of component IDs in the carbon number range of hydrocarbons analyzed; 
therefore, the analysis utilized GCxGC retention with mass spectral features for general component class 
assignments. A standard containing n-paraffins from C5 to C30 was used to determine retention time 
ranges for carbon number assignments of components binned by class. Standard components 
representing aromatics and cycloparaffins were used to establish second dimension retention times to 
aid in classifications.  

For compounds identified by retention time and mass spectral features (not relying on library matching 
or similarity scores) the carbon number was determined from first dimension retention time and 
formula mass inferred from closest eluting known compound of that class. These compounds account 
for 6.5% in the case of the ZSM-5 derived sample and 2.4% of the Pt/TiO2 sample. No fully unidentified 
compounds were encountered for these distillates; however, in this analysis if peaks are found for which 
a compound class cannot be determined these are assigned a response factor of n-paraffins (relative 
response of 1) and binned as unknowns, as is done with detailed hydrocarbon analysis (ASTM 
D6729/D6730). This approach is known to be in error as far as compound response factors and is used 
to provide a rough estimate of concentration for fully unidentified components. In the case of this 
analysis no peaks were detectable that could not be assigned to a hydrocarbon class. 

Compounds were quantified from their theoretical response factors calculated via effective carbon 
numbers [3].   

Relative response factor = 𝑀𝑀𝑖𝑖
𝑀𝑀nonane

× 𝑛𝑛C,nonane
𝑛𝑛C,𝑖𝑖

  

Where Mi is the molar mass of compound i, Mnonane = 128.26 g⋅mol–1 is the molar mass of nonane, 
nC,nonane = 9 is the effective carbon number for nonane, and nC,I is the effective carbon number for 
compound i.  

The total mass detected was set to 100%. 

 

 



Table S9: GCxGC Method Parameters   
Column    

Primary Rxi-17Sil, 20 m x 180 µm x 0.18 µm 
Secondary ZB-5HT, 1.0 m x 180 µm x 0.18 µm 

Injector    
0.1 µL injection, split 100:1 300°C 

Oven    

Primary 35°C, hold 5 min, ramp 3°C⋅min–1 to 125°C, ramp 10°C⋅min–1 to 340 °C 
hold 1 min 

Secondary 40°C offset from primary 
Modulator 15°C offset from secondary 
Modulator cycle timing modulator period, s hot time, s cold time, s 

0 to 800 s 8 1 3 
800 s to end of run 8 2 2 

Mass Spectrometer    

Transfer line 350°C 
TOF mass range (Da⋅e–1) m/z 29-600 
TOF acquisition rate 200 spectra per second 
Delay 70 s 
FID  

Detector Temperature 350°C 
H2 Flow  40 cm3⋅min–1 

Air Flow  300 cm3⋅min–1 
N2 Makeup Flow  25 cm3⋅min–1 

 

Short description of Shi et al. methods 

Shi et al. [4] developed four statistical algorithms to estimate properties of aviation fuels: weighted 
average (WA) method, partial least squares analysis (PLS), genetic algorithm (GA), and modified 
weighted average (MWA) method. The correlations were based on the total quantity (wt.%) of ten 
hydrocarbon classes for each carbon number.  The detailed hydrocarbon composition was obtained 
from GC x GC – MS/FID measurements of aviation fuels.  Their composition matrix was composed of 10 
hydrocarbon classes and 13 carbon numbers, ranging from C7 to C19.  The classes considered were: (1) 
n-paraffins, (2) mono-branched isoparaffins, (3) highly-branched isoparaffins, (4) mono-branched 
alkylmonocycloparaffins, (5) highly-branched alkylmonocycloparaffins, (6) di- and tri-cycloparaffins, (7) 
mono-branched alkylbenzenes, (8) highly-branched alkylbenzenes, (9) indene, alkylindene, 
naphthalenes, alkylnaphthalenes, and polycyclic aromatics, and (10) indane, alkylindane, tetralins, and 
alkyltetralins.  The properties of interest were density at 20 °C, freezing point, flash point, and net heat 
of combustion.    

The authors correlated the four properties with detailed composition of 17 aviation fuels.  The fuel 
samples consisted of four commercial RP-3 aviation fuels, one Fischer-Tropsch synthetic fuel, four 
kerosene distillation cut samples at different temperatures, five aviation hydrocarbon fuels with higher 



content in aromatics, and three laboratory synthetic aviation hydrocarbon fuels which were synthesized 
to ensure higher dicycloalkane content in samples [4]. 
 
The four algorithms are summarized below. 
 
Weighted average (WA) method 
 

𝑷𝑷 =  ���𝒙𝒙𝒊𝒊𝒊𝒊𝒖𝒖𝒊𝒊𝒊𝒊�
𝟏𝟏𝟏𝟏

𝒋𝒋=𝟏𝟏

𝟏𝟏𝟏𝟏

𝒊𝒊=𝟏𝟏

 

 
where 𝑷𝑷 is the property of aviation fuel; 𝒙𝒙𝒊𝒊𝒊𝒊 is the element of composition matrix X (size = 10 x 13);  𝒖𝒖𝒊𝒊𝒊𝒊 
is the element of property matrix U (size = 10 x 13).  Property matrix for average density D, average 
freezing point M, average flash point F, and average net heat of combustion H were provided.  Average 
property value was given for each class and carbon number. 

Partial least squares (PLS) method  

Weight percentage of hydrocarbon classes was used as the independent variable of the PLS method and 
was obtained by transforming the composition matrix X as follows: 

 

𝐶𝐶 =  �
𝑐𝑐1
⋮
𝑐𝑐10

� =  𝑋𝑋 ∙ 𝑁𝑁 = �
𝑥𝑥1,1 ⋯ 𝑥𝑥1,13
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𝑥𝑥10,1 ⋯ 𝑥𝑥10,13
� �

1
⋮
1
�  

where 𝑐𝑐𝑖𝑖  is the element of hydrocarbon classes column vector C (size = 10 x 1) and N is a column vector 
with all elements being unity (size = 13 x 1).  The fuel property was calculated from: 

 

𝑃𝑃 = 𝐶𝐶′𝐴𝐴 = �𝑐𝑐𝑖𝑖𝑎𝑎𝑖𝑖 = 𝐴𝐴′𝐶𝐶 = ⌈𝑎𝑎1  ⋯  𝑎𝑎10⌉
10

𝑖𝑖=1

�
𝑐𝑐1
⋮
𝑐𝑐10

� 

where 𝐶𝐶′  is the transposed matrix of 𝐶𝐶; 𝑎𝑎𝑖𝑖 is the element of PLS coefficients column vector A (size = 10 x 
1).  Coefficients vector A were provided for all four properties in the paper.  

Genetic algorithm (GA) 

The property was calculated from: 

 

𝑃𝑃 = 𝐿𝐿 ∙ 𝑋𝑋 ∙ 𝐾𝐾 = ⌈𝑙𝑙1  ⋯  𝑙𝑙10⌉ �
𝑥𝑥1,1 ⋯ 𝑥𝑥1,13
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𝑥𝑥10,1 ⋯ 𝑥𝑥10,13
� �
𝑘𝑘1
⋮
𝑘𝑘13

� 

where L is the GA coefficient row vector (size = 1 x 10) and K is the coefficient column vector (size = 13 x 
1).  The L and K vectors were provided for all four properties in the paper. 



Modified weighted average method (MWA) 

This method used the weighted property matrix W, as the independent variable.  The weighted property 
matrix W was transformed from the composition matrix X and property matrix U.  Each element of W is 
the weighted property defined as: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖  

The property was correlated using the following equation: 

𝑃𝑃 = 𝑀𝑀 ∙ 𝑊𝑊 ∙ 𝑁𝑁 = ⌈𝑚𝑚1  ⋯  𝑚𝑚10⌉ �
𝑤𝑤1,1 ⋯ 𝑤𝑤1,13
⋮ ⋱ ⋮

𝑤𝑤10,1 ⋯ 𝑤𝑤10,13
� �

1
⋮
1
� 

 

where M is the MWA coefficient row vector (size = 1 x 10); W is the weighted property matrix (size = 10 
x 13); N is a column vector with all elements being unity (size = 13 x 1).  The M coefficient vector was 
provided for all four properties in the paper.   

In testing the MWA model, we found that our results for flash point and freezing point did not match 
those provided in the paper.  On contacting the authors, we were informed that the M coefficients for 
flash point (TF, K) and freezing point (FP, °C) in Table 9 of the paper were inadvertently switched [5].  The 
correct parameters are: 

Table S10. Corrected MWA model coefficients for flash point and freezing point [5] 

Model Properties Coefficients 
MWA TF (K) M = [1.1152; 0.7507; 0.9061; 1.3029; 0.8388; 1.0600; —4.851; 1.4785; 

1.6361; 1.1350] 
 FP (°C) M = [—1.0978; 1.9496; 0.4752; 1.1457; 0.8571; 1.7976; —0.6740; 

1.7006; 29.2301; 16.6297] 
 

Short description of Vozka et al. density prediction methods 

Vozka et al. [6] developed correlations between detailed chemical composition and density at 15 °C.  
The composition matrix obtained from GC × GC-TOF/MS and GC × GC-FID included seven hydrocarbon 
classes, each divided into carbon numbers or groups, ranging from C7 to C20. The hydrocarbon classes 
were: (1) n-paraffins, (2) isoparaffins, (3) monocycloparaffins, (4) di- and tri-cycloparaffins, (5) 
alkylbenzenes, (6) cycloaromatics compounds (indans, tetralins, indenes, etc.), and (7) 
alkylnaphthalenes. The authors used 50 samples of petroleum-derived fuels and alternative fuel 
blending components. In addition, the density of a representative compound for each group was used in 
further calculations instead of the average density value for each class as utilized in the Shi et al. method 
[4].  In their work, in addition to the WA and PLS methods, they explored a high dimensional method 
using regularized support vector machines (SVM).  
 
The methods are summarized below. 
 
 
 



Weighted average (WA) method 
 
This method is the same as the WA method of Shi et al., except the density of a representative 
compound for each carbon number in a class was used instead of the average density value for each 
carbon number in a class as utilized in Shi et al. 
 
Partial least squares (PLS) and regularized support vector machines (SVM) methods 

In this work, three matrices were defined.  (1) a composition matrix X (size 7 x 14) containing weight 
fraction data of the seven classes and 14 groups representing carbon numbers C7 to C20.  (2) a density 
matrix D (size 7 x 14) containing density values of the representative compounds for each group in the 
respective class and (3) a product matrix P (size 7 x 14) containing result of an elementwise 
multiplication of composition and density matrices, i.e., 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖  

The product matrix was used to improve the predictive capabilities of the model.    

PLS and SVM methods were applied to the composition matrix as well as the product matrix, resulting in 
two alternative correlations for each method.  Therefore, a total of four correlations were presented: 
PLS composition, PLS product, SVM composition, and SVM product. 

The algorithms utilized the composition matrix X in one of two ways: (1) weight fractions of each carbon 
numbers in a hydrocarbon class were summed and used a predictor resulting in seven predictors in 
total.  (2) the weight fraction of each compound in the composition matrix was used resulting in 98 
predictors in total.    

The PLS composition and SVM composition correlations with 98 predictors used the following equation 
to predict density at 15 °C. 

𝜌𝜌 = 𝛽𝛽0 + ���𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
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where 𝛽𝛽0 is the intercept; 𝛽𝛽𝑖𝑖𝑖𝑖 is the correlation coefficient; 𝑥𝑥𝑖𝑖𝑖𝑖  is the element of the composition matrix. 

When seven predictors were used, the equation can be simplified to: 

𝜌𝜌 = 𝛽𝛽0 + ��𝛽𝛽𝑎𝑎𝑤𝑤𝑎𝑎
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where 𝛽𝛽0 is the intercept; 𝛽𝛽𝑎𝑎 is the correlation coefficients of predictor a; 𝑤𝑤𝑎𝑎 is the sum of weight 
fractions of each carbon numbers in hydrocarbon class a. 

The PLS product and SVM product correlations with 98 predictors used the following equation to predict 
density at 15 °C. 

𝜌𝜌 = 𝛽𝛽0 + ���𝛽𝛽𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖
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where 𝛽𝛽0 is the intercept; 𝛽𝛽𝑖𝑖𝑖𝑖 is the correlation coefficient; 𝑝𝑝𝑖𝑖𝑖𝑖  is the element of the product matrix. 

When seven predictors were used, the equation can be simplified to: 

𝜌𝜌 = 𝛽𝛽0 + ��𝛽𝛽𝑎𝑎𝑝𝑝𝑎𝑎
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where 𝛽𝛽0 is the intercept; 𝛽𝛽𝑎𝑎 is the correlation coefficients of predictor a; 𝑝𝑝𝑎𝑎 is the sum product of 
weight fractions and densities of each carbon numbers in hydrocarbon class a. 

 

The correlation coefficients 𝛽𝛽0 and 𝛽𝛽𝑖𝑖𝑖𝑖 for PLS and SVM using seven predictors were reported in the 
paper while those for the 98 predictors were given in the Supplemental Information [6]. 
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