Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Regulating defects and interfacial compatibility of porous carbon derived from oxygen contained composites to enhance oxygen reducing in aqueous electrolyte

Zheng Li,^a Chenfan Yang,*b Guoning Mao,^b and Qiyu Wang*a

E-mail addresses: chenfany1018@163.com (C. Yang), wangqiyucsu@163.com (Q. Wang)

^a School of Metallurgy and Environment, Central South University, Changsha 410083, China.

^b China North Engine Research Institute (Tianjin), Tianjin 300400, China.

^{*}Corresponding authors.

Supporting Experimental Details

Characterization of the materials: A field-emission scanning electron microscopy (FESEM, FEI Quanta-200) and a scanning transmission electron microscopy (STEM, MIRA3 TESCAN) were taken to run morphology tests. Expressions for chemical states of the carbon, nitrogen and sulfur in the material were performed by X-ray photoelectron spectroscopy (XPS, ESCA LAB 250Xi).

The Koutechy-Levich (K-L) equation: The average electron transfer number of made samples could be calculated from the slope of the K-L equation.

The K-L equation is given as follows:

$$\frac{1}{\mathbf{j}} = \frac{1}{\mathbf{j}_k} + \frac{1}{\mathbf{B}\boldsymbol{\omega}^{0.5}}$$

where j_k is the kinetic current and ω is the electrode rotating rate. B could be determined from the slope of the K-L plots based on the Levich equation as follows:

$$\mathbf{B} = 0.2 \text{nF} (D0_2)^{2/3} v^{-1/6} C_{0_2}$$

where *n* represents the number of electrons transferred per oxygen molecule, *F* is the Faraday constant (F = 96485 C mol⁻¹), D_{O2} is the diffusion coefficient of O₂ in0.1 M KOH (1.9 × 10⁻⁵ cm² s⁻¹), *v* is the kinetic viscosity (0.01 cm² s⁻¹), and C_{O2} is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol cm⁻³). The constant 0.2 is adopted when the rotation speed is expressed in rpm.

Supporting Figures

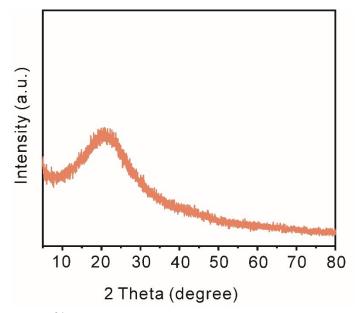


Fig. S1 XRD pattern of brown precursors.

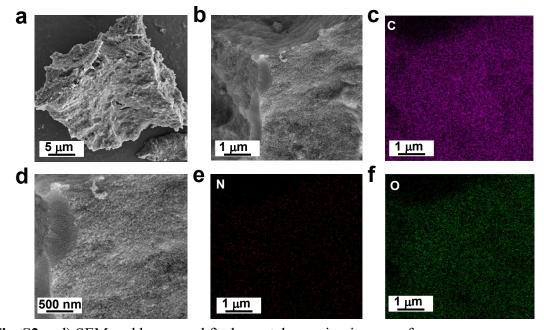


Fig. S2 a, d) SEM and b, c, e and f) elemental mapping images of precursor.

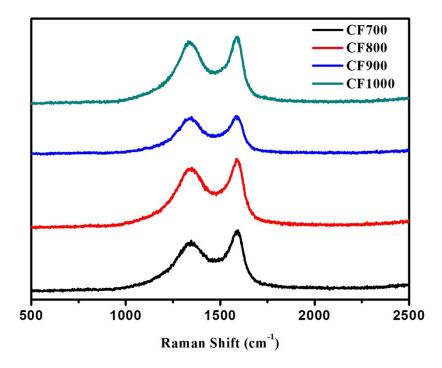


Fig. S3 Raman spectra of CF700, CF800, CF900 and CF1000.

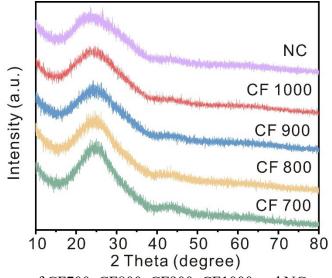
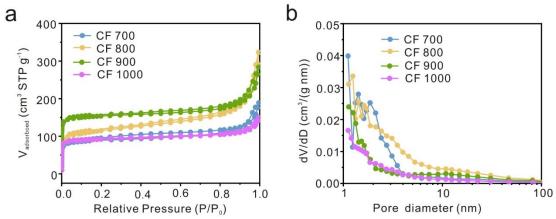



Fig. S4 XRD pattern of CF700, CF800, CF900, CF1000 and NC.

Fig.S5 a) N₂ adsorption-desorption isotherms with the corresponding; b) PSD curves of CF700, CF800, CF900 and CF1000.

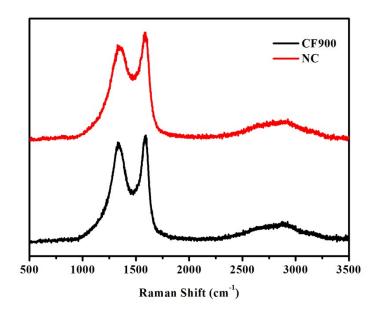
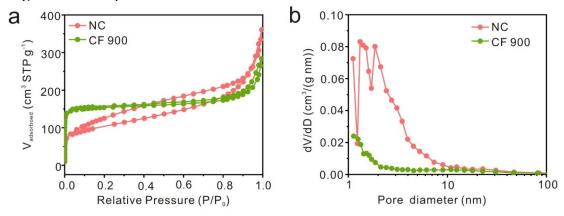



Fig. S6 Raman spectra of CF900 and NC.

Fig. S7 a) N₂ adsorption-desorption isotherms with the corresponding; b) PSD curves of CF900 and NC.

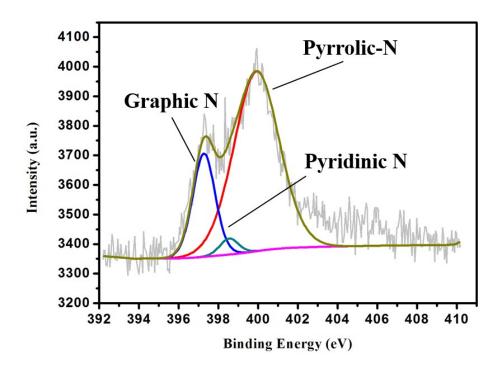


Fig. S8 XPS survey spectrum of NC with the N 1s spectra.

Table S1. Textural properties of carbon materials.

Sample	BET surface area ^[a]	Total pore volume[b]	Micropore volume[c]	
	$/ m^2 g^{-1}$	/ cm ³ g ⁻¹	/ cm ³ g ⁻¹	
CF700	353.4	0.292	0.129	
CF800	422.8	0.500	0.128	
CF900	612.8	0.439	0.217	
CF1000	362.1	0.231	0.127	
NC	453.6	0.558	0.091	

[[]a] Determined by multipoint BET method within the relative pressure (P/P_0) range of 0.01 to 0.2. [b] Obtained at the relative pressure (P/P_0) range of 0.98. [c] Determined by t-plot method within the relative pressure (P/P_0) range of 0.2 to 0.5.

Table S2. Comparison of the AAB performances of different carbon-based catalyst.

Catalysts	Cell Type/Electrolyte	Discharge Voltage /V	Current Densities /mA cm ⁻²	Ref
NC	Flow/ Liquid 6 M KOH + 0.01 M Na ₂ SnO ₃ + 0.0005 M In(OH) ₃ + 0.0075 M ZnO	1.36	50	This work
Commercial	Flow/Liquid	0.9	100	1

manganese	4 M NaOH +			
	$0.05M \text{ Na}_2\text{SnO}_3$			
20% Pt/C	Flow/ Liquid	1.32	50	This
	6 M KOH + 0.01			work
	$M Na_2SnO_3 +$			
	0.0005 M			
	$In(OH)_3 + 0.0075$			
	M ZnO			
SMNP	Flow/Liquid	0.9	100	2
	6 M KOH			
Co SANC-850	Static/Liquid	1.3	200	3
	6 M KOH + 0.01			
	$M Na_2SnO_3 +$			
	0.0005 M			
	$In(OH)_3 + 0.0075$			
	M ZnO			
Cu-Fe-N-C	Flow/ Liquid	1.5	40	4
	6 M KOH + 0.01			
	$M Na_2SnO_3 +$			
	0.0005 M			
	$In(OH)_3 + 0.0075$			
	M ZnO			

Supporting References

- 1. Y. Zhang, H. Tao, J. Liu, Y. Sun, J. Chen, B. Hua, T. Thundat, J. Luo, *Nano Energy*, **2017**, *37*, 392-400.
- 2. J. Ryu, H. Jang, J. Park, Y. Yoo, M. Park, J. Cho, Nat Commun, 2018, 9, 3715.
- 3. B. Wang, K. Liu, X. Yang, M. Liu, T. Chan, X. Qiu, J. Li, W. Li, *J. Mater. Chem. A* **2020**, *8*, 2131-2139.
- 4. J. Li, J. Chen, H. Wan, J. Xiao, Y. Tang, M. Liu, H. Wang. *Appl. Catal. B*, **2019**, 242, 209.