Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Three-Dimensional Porous Metal Phosphide Cathode Electrodes Prepared

via Electroless Galvanic Modification for Alkaline Water Electrolysis

Sankar Sasidharan,¹ Rajith Illathvalappil,¹ S. Assa Aravindh,² Hidenori Kuroki,¹ Gopinathan M. Anilkumar,^{1,3} Takeo Yamaguchi^{1*}

¹Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midori-ku, Yokohama, Japan 226-8503 *E-mail: yamag@res.titech.ac.jp

²Nano and Molecular Systems Research Unit (NANOMO), Pentti Kaiteran katu 1, Linnanmaa, University of Oulu, Oulu- 90014, Finland

³R&D Centre, Noritake Co., Ltd., 300 Higashiyama, Miyochi-cho, Miyoshi 470-0293, Japan

Figure S1. Photograph showing the deposition of Ni particles after the galvanic replacement by Ru on the nickel foam (NF) surface after 24 h immersion in RuCl₃ solution.

Figure S2. XRD patterns for NF-Ru in comparison with bare NF

Figure S3. XRD patterns for Ni_2P -Ru/NF developed after keeping the NF in RuCl₃ solution at different times (3, 16, 20 and 24 h).

Figure S4. a) XPS survey spectra for Ni₂P-Ru/NF (24 h) and bare NF. **b)** XPS deconvoluted spectrum for Ni 2p (bare NF).

Figure S5. XPS deconvoluted spectra for Ni₂P-Ru/NF (24 h): a) Ru 3p and b) O 1s.

Figure S6. SEM micrographs of a) bare NF and b-d) Ni₂P-Ru/NF (24 h) catalysts.

Catalyst	Immersion time in RuCl ₃ solution (h)	Overpotential at 10/20 mA cm ⁻² (mV)
Ni ₂ P-Ru/NF (3 h)	3	113/145
Ni ₂ P-Ru/NF (16 h)	16	92/114
Ni ₂ P-Ru/NF (20 h)	20	69/88
Ni ₂ P-Ru/NF (24 h)	24	40/60
Bare NF	_	329/364
Ni ₂ P/NF	_	290/316
Pt-Ru/C	-	23/28

Table S1. HER performance for the different catalysts in the study.

Catalyst	Current density (mA cm ⁻²)	Overpotential (mV)	Reference
Ni ₂ P-Ru/NF (24 h)	100	107	Present work
Ni ₂ P-Ru/NF (24 h)	10	40	Present work
Ru-S-2/C	10	40	1
RuP ₂ @NPC	10	52	2
$Ru@C_2N$	10	17	3
RuSi	10	37	4
Ru ₂ P	10	57	5
Ru-Ru ₂ P@PC	10	43.4	6
P-Ru/C	10	31	7
S-RuP@NPSC-900	10	92	8
Ru/CoO	10	55	9
Ru ₁ CoP/CDs-1000	10	51	10
Ru SAs-Ni ₂ P NPs	10	57	11
NiRu _{0.13} -BDC	10 ²	34	12
NiCoDPA	10	112	13
Ni-Fe/NiMoN _{x/} NF	20	49	14
NiFeOOH/NF	10	145	15
Ru/Ni ₂ P/NF	100	130	16
RuCoP/NF	10	44	17
CeO _x -NiB@NF	10	19	18
Co ₂ Fe-P	10	48	19
$Cu_2S/Ni_3S_2/NF-3$	10	50	20
CoS ₂ -2	10	288	21

Table S2. Comparison of the alkaline HER performance of Ni_2P -Ru/NF (24 h) with recent literature on Ru- and Ni-based catalysts in 1 M KOH solution.

Figure S7. HER curve recorded for PtRu/C in N₂ saturated 1M KOH solution.

Anode Cathode	Current density (mA cm ⁻²)	Potential (V)	Reference
IrO ₂ /NF Ni ₂ P-Ru/NF	10	1.6	Present work
RuCoP/NF RuCoP/NF	10	1.533	21
IrO2@MnO2/rGO IrO2@MnO2/rGO	10	1.6	22
NiV/Ir LDH NiV/Ir LDH	10	1.49	23
IrNi/NF IrNi/NF	10	1.6	24
Ni-S-Se/NF Ni-S-Se/NF	10	1.57	25
Ni ₂ P-CuP ₂ /NF Ni ₂ P-CuP ₂ /NF	10	1.45	26
NiFeOOH/NF NiFeOOH/NF	10	1.59	27
LSC/K-MoSe ₂ LSC/K-MoSe ₂	10	1.59	28
Co ₂ Fe-P Co ₂ Fe-P	10	1.54	19
Ir ₁ @Co/NC Ir ₁ @Co/NC	10	1.61	29
MnO ₂ /Co ₃ O ₄ MnO ₂ /Co ₃ O ₄	10	1.66	30

Table S3. Comparison of the OWS performance of $IrO_2/NF||Ni_2P-Ru/NF$ with recent reports in 1 M KOH electrolyte solution.

1.63

Figure S8. a) Linear fitting of current density vs scan rate showing the C_{dl} for bare NF, Ni₂P/NF and Ni₂P-Ru/NF (24 h) catalysts. CV curves for the different catalysts at varying scan rates for **b**) Ni₂P-Ru/NF, **c**) Ni₂P/NF, and **d**) bare NF.

Figure S9. HER LSV curves normalized with ECSA for the Ni₂P-Ru/NF (24 h, 400 μ m) along with bare NF (400 μ m) and control sample of Ni₂P/NF (400 μ m) in N₂-saturated 1 M KOH solution.

Figure S10. Total density of states (DOS) calculated for Ni_2P -Ru without and with H* adsorption (The values shown correspond to spin down and up states).

Figure S11. Total DOS calculated for Ni_2P and Ni_2P -Ru with the values shown corresponding to spin up states.

Figure S12. Optimized structure of Ni₂P-Ru after H₂O* adsorption.

Figure S13. XPS deconvoluted spectra of **a**) Ru3p and **b**) O1s for Ni₂P-Ru/NF (24 h) after the HER durability test.

Figure S14. SEM images after the durability test for Ni_2P -Ru/NF (24 h).

 Ni_2P -Ru/NF (24 h) after the durability test.

Configuration	Adsorption energy of H, ΔG_{H^*} (eV)	H distance from surface (Å)	
Ni ₂ P-H	1 29	N: II. 1 4946	
H on Ni	-1.28	INI-FI: 1.4840	
Ni ₂ P-Ru-H	0.129	D., II. 1 (52)	
H on Ru	0.128	Ru-H: 1.6528	
Ni ₂ P-Ru-H	0.425	NI: II. 1 40	
H on Ni	0.425	N1-H: 1.48	
Ni ₂ P-Ru-H	0.121	D II. 1 42	
H on P	-0.131	Р-Н: 1.43	
Pt (111)-C-H	0.122		
H on Pt	0.122		
Pt(111)-Ru-C-H	0 (79	D4 II. 1 00	
H on Pt	-0.078	РТ-Н: 1.88	
Pt(111)-Ru-C-H	1.055	D 11. 1.((
H on Ru	-1.955	Ku-H: 1.60	

Table S4. The H* adsorption energy (ΔG_{H*} in eV) on different surfaces: Ru(001), N and P site of Ni₂P-Ru, Pt(111) site of Pt/C and PtRu/C, along with Ru site of PtRu/C. The distances (in Å) of interaction between hydrogen atom (H) and the different sites.

Figure S16. Modelled catalyst systems for the DFT studies: **a)** Ni₂P (*Purple : Ni, Blue : P*), **b)** Ni₂P-Ru (*Purple : Ni, Blue : P, Grey : Ru*), **c)** Pt/C ((*Purple : Pt, Yellow : C*), and **d)** PtRu/C (*Purple : Ni, Grey : Ru, Yellow : C*).

Table S5. The H_2O^* adsorption energy (eV) on different surfaces: Ru(001) site of Ni₂P-Ru, Pt(111) site of Pt/C. The distances (in Å) of interaction between surface and water molecule.

Configuration	Adsorption energy of H ₂ O ($^{\Delta G_{H_2O*}}$) (eV)	H ₂ O distance from surface (Å)
Ni ₂ P-Ru-H ₂ O H ₂ O on Ru	-0.458	2.3
Pt(111)-C-H ₂ O H ₂ O on Pt	1.15	3.5

Figure S17 a) The H-type cell based overall water splitting (OWS) for qualitative assessment of the Ni₂P-Ru electrode b) Chronopotentiometry curve recorded for 24 h at 100 mA cm⁻² showing the stability of the OWS system in 1M KOH solution.

References

- 1. C. Ling, H. Li, C. Yuan, Z. Yang, H. Chong, X. Qian, X. Lu, T. Cheang, A. Xu, Sulfur doped ruthenium nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline media, *Catal. Sci. Technol.*, 2021, 11, 3865–3872.
- 2. Z. Pu, I. S. Amiinu, Z. Kou, W. Li, S. Mu, RuP₂-Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values, *Angew. Chem. Int. Ed.*, 2017, 56, 11559.
- **3.** J. Mahmood, F. Li, S. Jung, M. S. Okyay, I. Ahmad, S. Kim, N. Park, H. Y. Jeong, J. Baek, An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction, *Nat. Nanotech.*, 2017,12, 441.
- 4. H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng, W. Chen, X. Zo, Promoting Subordinate, Efficient Ruthenium Sites with Interstitial Silicon for Pt-Like Electrocatalytic Activity, *Angew. Chem. Int. Ed.*, 2019, 58, 11409.
- 5. Y. T. Li, F. Q. Chu, Y. F. Bu, Y. Kong, Y. X. Tao, X. Zhou, H. R. Yu, J. J. Yu, L. Tang, Y. Qin, Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction, *Chem. Commun.*, 2019, 55, 7828–7831.

- 6. Z. Liu, Z. Li, J. Li, J. Xiong, S. Zhou, J. Liang, W. Cai, C. Wang, Z. Yang, H. Cheng, Engineering of Ru/Ru₂P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction, *J. Mater. Chem. A*, 2019, 7, 5621–5625.
- Y. M. Zhao, X. W. Wang, G. Z. Cheng, W. Luo, Phosphorus induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis, *ACS Catal.*, 2020, 10(20), 11751–11757.
- X. Liu, F. Liu, J. Yu, G. Xiong, L. Zhao, Y. Sang, S. Zuo, J. Zhang, H. Liu, W. Zhou, Charge redistribution caused by S, P synergistically active Ru endows an ultrahigh hydrogen evolution activity of S-doped RuP embedded in N, P S-doped carbon, *Adv. Sci.* 2020, 7(17), 2001526.
- 9. J. X. Guo, D. Y. Yan, K. W. Qiu, C. Mu, D. Jiao, H. Wang, T. Ling, High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst, *J. Energy Chem.*, 2019, 37, 143–147.
- H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang, S. Lu, Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production, *Angew. Chem. Int. Ed.*, 2021, 60(13), 7234–7244.
- K. Wu, K. Sun, S. Liu, W. Cheong, Z. Chen, C. Zhang, Y. Pan, Y. Cheng, Z. Zhuang, X. Wei, Y. Wang, L. Zhang, Q. Zhang, D. Wang, Q. Peng, C. Chen, Y. Li, Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution, *Nano Energy*, 2021, 80, 105467.
- 12. Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, M. Liu, G. Li, C. Su, Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution, *Nat. Commun.*, 2021, 12(1), 1369.
- **13.** P. Bhanja, B. Mohanty, S. Chongdar, A. Bhaumik, B. K. Jena, S. Basu, Novel Microporous Metal Phosphonates as Electrocatalyst for the Electrochemical Hydrogen Evolution Reaction, *ACS Appl. Energy Mater.*, 2021, 4(11), 12827–12835.
- Y. Qiu, M. Sun, J. Cheng, J. Sun, D. Sun, L. Zhang, Bifunctional Ni-Fe/NiMoN_x nanosheets on Ni foam for high-efficiency and durable overall water splitting, *Catal. Commun.*, 2022, 164, 106426.
- **15.** J. Dong, Y. Wang, Q. Jiang, Z. Nan, F. R. Fan, Z. Tian, Charged droplet-driven fast formation of nickel–iron (oxy)hydroxides with rich oxygen defects for boosting overall water splitting, *J. Mater. Chem. A*, 2021, 9, 20058–20067.
- G. Ma, N. Yang, Y. Xue, G. Zhou, X. Wang, Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle Decorated Nickel Phosphide Ultrathin Nanosheets, ACS Appl. Mater. Interfaces, 2021, 13, 42763–42772.
- **17.** Y. Yang, Q. Liu, H. Wang, H. Wen, Z. Peng, K. Xiang, C. Gao, X. Wu, B. Li, Z. Liu, Phosphorus-Doped 3D RuCo Nanowire Arrays on Nickel Foam with Enhanced Electrocatalytic Activity for Overall Water Splitting, *ACS Omega*, 2021, 6, 10234–10241.
- **18.** H. Wang, H. Liu, T. Feng, L. Wang, W. Yuan, Q. Huang, Y. Guo, Electronically modulated nickel boron by CeO_x doping as a highly efficient electrocatalyst towards overall water splitting, *Dalton Trans.*, 2022, 51, 675–684.
- 19. L. Li, Y. Lu, X. Liu, X. Wang, S. Zhou, Layered double hydroxide drived ultra-evenly Rh-doped Co₂Fe-P composite for high-efficient overall water splitting, *J. Alloys and Comp.*, 2022, 895, 1625492.
- **20.** Y. Peng, H. He, Novel heterostructure Cu₂S/Ni₃S₂ coral-like nanoarrays on Ni foam to enhance hydrogen evolution reaction in alkaline media, *RSC Adv.*, 2021, 11, 39493–39502.
- **21.** Y. Dong, H. Su, G. Liu, Exploring the electrocatalytic activity of cobalt disulfide nanosheets towards the hydrogen evolution reaction with *in situ* ECAFM, *Sustainable Energy Fuels*, 2021, 5, 4115–4125.

- S. C. Karthikeyan, R. S. Kumar, S. Ramakrishnan, S. Prabhakaran, A. R. Kim, D. H. Kim, D. J. Yoo, Efficient Alkaline Water/Seawater Electrolysis by Development of Ultra-Low IrO₂ Nanoparticles Decorated on Hierarchical MnO₂/rGO Nanostructure, ACS Sustainable Chem. Eng., 2022, 10, 15068–15081.
- 23. S. Li, C. Xi, Y. Z. Jin, D. Wu, J. Q. Wang, T. Liu, H. B. Wang, C. K. Dong, H. Liu, S. A. Kulinich, X. W. Du, Ir-O-V Catalytic Group in Ir-Doped NiV(OH)₂ for Overall Water Splitting, ACS Energy Lett., 2019, 4(8), 1823–1829.
- 24. F. Lv, W. Zhang, W. Yang, J. Feng, K. Wang, J. Zhou, P. Zhou, S. Guo, Ir-Based Alloy Nanoflowers with Optimized Hydrogen Binding Energy as Bifunctional Electrocatalysts for Overall Water Splitting, *Small Methods*, 2020, 4(6), 1–7.
- **25.** N. Chen, Y. Du, G. Zhang, W. Lu, F. Cao, Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media, *Nano Energy*, 81, 2021, 105605.
- 26. S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera, K. Ghosh, Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni₂P–CuP₂ Nano-Architecture as Efficient Electrocatalyst for Overall Water Splitting, ACS Nano, 2021, 15(3), 5586–5599.
- 27. J. Dong, Y. Wang, Q. Jiang, Z. Nan, F. R. Fan, Z. Tian, Charged droplet-driven fast formation of nickel–iron (oxy)hydroxides with rich oxygen defects for boosting overall water splitting, *J. Mater. Chem. A*, 2021, 9, 20058–20067.
- **28.** N. K. Oh, J. Seo, S. Lee, H. Kim, U. Kim, J. Lee, Y. Han, H. Park, Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer, *Nat. Commun.*, 2021, 12, 4606.
- 29. W. Lai, L. Zhang, W. Hua, S. Indris, Z. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y. Wang, J. Wang, Z. Hu, H. Liu, S. Chou, S. Dou, General π-Electron-Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single-Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting, *Angew. Chem. Int. Ed.*, 2019, 58(34), 11868–11873.
- 30. C. Wang, F. Wang, S. Qiu, J. Gao, L. Gu, K. Wang, P. Zuo, K. Sun, X. Zhu, Integrating Co₃O₄ Nanoparticles with MnO₂ Nanosheets as Bifunctional Electrocatalysts for Water Splitting, *Int. J. Hydrogen Energy*, 2021, 46(17), 10356–10365.
- **31.** H. Zhang, X. Wu, C. Chen, C. Lv, H. Liu, Y. Lv, J. Guo, J. Li, D. Jia, F. Tong, Spontaneous ruthenium doping in hierarchical flower-like Ni₂P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution, *Chem. Eng. J.*, 2021, 417, 128069.