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[ Spent LIBs supplied from laptop battery packs ’

Dismantling and separation of graphite anode
active material from Cu foil

Washing of graphite with DI water and heating at
750 °C in inert condition (RG)
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oxide (RecGO) through modified Hummer's
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Supplementary Scheme S1: A flowchart showing the recovery of raw material and electrode

active material synthesis methodology.



The reactions involved in the KOH activation process of the carbon matrix are given below.

At a temperature range of 400-600 °C:

6KOH + 2C — 2K,COs + 2K + 3H,

KOH + (C — H) » K,CO5 + K+ H,

KOH + (C — OH) — K,CO; + K + H,0 + H,

KOH + (—C = 0)/(C— 0 —C) - K,CO5 + K+ H, + CO

KOH + (—COOH) /(=0 — C = 0) - K,CO5 + K+ H, + CO,

At temperatures > 800 °C:

K,CO; + C - K,0+CO

K,CO; - K,0 + CO,

2K+ CO, - K,0 + CO

K,0+C - 2K + CO

Formulae for Specific Power and Specific Energy calculation:

The specific capacitances from the GCD curves were calculated using the formula

mAh

Current,i(A)*Time of discharge,t(s) _ Sp- capacity( g )*3600

SpelelC Capacttance (F/g) - Voltage dif ference,dv(V)*Active mass,m(g) - 1000 * dV (V)



The cycling stabilities were studied at 1 Ag™! current density. The energy-power output relationship
of the LIC cells developed was analyzed through the Ragone plot at a coin cell level, considering
both electrode active masses only. The specific power (Ps) and specific energy (Es) were calculated
using the formulae Ps = % and Es = Ps * t, respectively where V = M in Volts, I is the
current applied in A, M is the active mass of both electrodes in kg, and t is the time in hours.

The volumetric power density (Pv) and energy density (Ev) are calculated using the formulae Pv =

V=l
Volume of both electrode coating

and Ey =Py * t.
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Supplementary Figure S1: XPS survey scan of (a) RG@RGNS, and (b) ARGNS

The survey scan of RG@RGNS (Supplementary Figure S1) shows the elemental composition of
the matrix as 89.4% carbon and 10.6% oxygen. Further, the survey scan (Supplementary Figure

S1) shows a presence of 57 % carbon and 43 % oxygen in the ARGNS matrix.



Supplementary Figure S2: (a-b) SEM and (c-d) TEM images of RG and RGNS.

The SEM and TEM images of RG show graphitic microstructures with layered arrangements. At

the same time, a disordered array of nanosheets is visualized in the case of RGNS.
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Supplementary Figure S3: (a) Voltage profile, and (b) Cycling stability at 500 mA g comparison

of anode half cell of RG, RGNS, and RG@RGNS vs. Li/Li".

The comparative discharge voltage profiles of RG, RGNS, and RG@RGNS are shown in
Supplementary Figure S3a, which provides an insight into their relative Li-ion storage

phenomenon.

RG@RGNS delivers a capacity of 320 mAh g at a current density of 1 A g! till 1000 cycles
(Figure 5f). RG@RGNS, when subjected to different current rate cycling (Figure 5g) from 0.1 A

g'to 10 A g'!, it is found to deliver a specific capacity of 120 mAh g™! at a high current density of

SAgh

RG, RGNS, and RG@RGNS electrodes, when cycled at a current density of 500 mAh g™, deliver
a specific capacity of 180, 480, and 350 mAh g’!, respectively (Supplementary Figure S3b) for 500

cycles.
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Supplementary Figure S4: (a) log i(V) vs. log v plot, and (b) i(V)/V'? vs. v!? plot of pre-lithiated
RG@RGNS full cell at different potentials during an anodic and cathodic scan of cyclic

voltammogram in the potential range 2.0-4.0 V.

The capacitive and diffusive current contribution at a particular voltage at varying potential rates

172

were analyzed through the Trassati procedure by using the equation, i (V) = k;*v + k>*v'’*, where

12 = diffusive component. [1]

i = current at voltage V, ki*v = capacitive component and ko* v
Analyzing the i(V)/ v ? versus v'? plot (Supplementary Figure S4b), both capacitive and

diffusive components in the current response were quantified.
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Supplementary Figure S5: Ex-situ postmortem XRD for cycled (a) RG@RGNS anode and (b)

ARGNS cathode. (c¢) Comparison plot of the graphitic peak of RG@RGNS composite between

pristine and cycled anode.

The post-cycling ex-situ XRD of both the electrodes indicates the interlayer rearrangement in the
case of RG@RGNS anode and ARGNS cathode as a decrease in the maximum and increase in
the broadness of the (002) peak is observed in the graphene components (Supplementary Figure
S5a-b). Also, an increase in the peak maximum and broadness is observed for the (002) peak
corresponding to RG in RG@RGNS composite due to the decrease in the interlayer distance, the

introduction of disorder, and loss in the crystallinity of the graphitic domain with cycling



(Supplementary Figure S5¢) which further blocks the passage of Li", decreases ion diffusivity and

results in the trapping of the ions.
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Supplementary Figure S6: Galvanostatic charge-discharge plot at different current densities (0.2,

0.5,1,2,5,and 10 A g)
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Supplementary Figure S7: 3-electrode analysis of the pre-lithiated RG@RGNS//ARGNS full cell

at a current density of 1 A g\,



A 3-electrode setup is used to measure the potential evolution of the full-cell as well as individual
cathode and anode versus Li/Li* when a current density of 1 A g! is applied in the potential range
of 2.0-4.0 V. The potential evolution at the anode reaches a minimum of ~0.01 V and does not go

below 0.0 V vs. Li/Li". This, in turn, discards any possibility of lithium plating.
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Supplementary Figure S8: (a), (b) The galvanostatic charge-discharge cycling at different current

densities, and (c) Comparative specific energy-power relation of pre-lithiated RG//ARGNS LIC

full cell.

A full cell is fabricated using pre-lithiated recycled graphite (RG) as an anode and activated
recycled graphene nanosheets (ARGNS) as a cathode in a 1:1 mass ratio. The pre-lithiated
RG//RGNS full cell could deliver capacitances of 78.5, 63, 56.5, 50, 40, and 32 F g™! at current

densities 0f 0.2, 0.5, 1,2, 5,and 10 A g respectively. Further, the full cell could deliver an energy



density of 65.5 Wh kg™ at a power density of 300 W kg!. The full cell could retain an energy
density of 32 Wh kg™! at a high power density of 15000 W kg™!. Thus, considerable improvement
in deliverable capacitance and energy densities is observed when the recycled graphite is

composited with recycled graphene.

Supplementary Table 1: Comparison of RG@RGNS/ARGNS LIC with previously reported

literature

Device Configuration | Voltage Energy (thg'l) Cycle life and | References

(Anode//Cathode) @ Power (Wkg_l) retention

Graphite//AC 1.5-5V 145.8@65 65% after 10K cycles [2]
18@18000

Graphene//AC 2-4V 95@?27 75% after 300 cycles [3]
61.5@222

Graphite// graphene 2-4V 135@50 97% after 3.5K [4]
105@1500

Graphite//  Functionalized | 2-4V 106@84 100% after 1K cycles [5]

graphene 85@4200

Recycled graphite//AC 243V 112@300 70% after 5K cycles [6]

Recycled graphite//AC via | 1.3-3.8V | 46.4@248 >100% after 4K cycles | [7]

diglyme co-intercalation @3 Ag!

DMF  washed recycled | 1.8-4.3V | 185.5@319 75% after 2K cycles [8]

graphite// AC

RG@RGNS//ARGNS 2.0-4V 135@300 70% after 10,000 | In this work
74@15000 cycles
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