Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

## **Electronic Supporting Information**

## Sustainable porous carbons from tannic acid based KOH activated as highperformance CO<sub>2</sub> capture sorbents

Yujia Zhang <sup>a</sup>, Fengwu Tian <sup>a</sup>, Xiaosha Guo <sup>a</sup>, Miaomiao Bai <sup>a</sup>, Tian Tang <sup>a</sup>, Xixi Di <sup>a</sup>, Wei

Wang<sup>a</sup>, Zhifeng Liu<sup>a,b</sup>, Xianzhao Shao<sup>a,\*</sup>

<sup>a</sup>Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China;

<sup>b</sup>State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China

\* Corresponding authors. E-mail addresses: xianzhaoshao@snut.edu.cn (X. Shao)



**Figure S1**. (a-b) Comparison of TCKs-1-Y obtained at different activation temperature by gas adsorption/desorption analysis. (a-b)  $N_2$  sorption isotherms at -196 °C, (c-d) pore size distribution (PSD), PSD was calculated by NLDFT with the slit pore geometry assumption. (e-f) CO<sub>2</sub> adsorption isotherms at 0 °C



**Figure S2**. (a-b) Comparison of TCKs-3-Y obtained at different activation temperature by gas adsorption/desorption analysis. (a-b)  $N_2$  sorption isotherms at -196 °C, (c-d) pore size distribution (PSD), PSD was calculated by NLDFT with the slit pore geometry assumption. (e-f) CO<sub>2</sub> adsorption isotherms at 0 °C

## S1. Supplementary experimental section

The application of Ideal adsorbed solution theory (IAST) for calculating adsorption selectivity of  $CO_2/N_2$ 

The adsorption selectivity is a significant parameter to evaluate the adsorption separation efficiency in the industrial processes. The adsorption selectivity of TCKs for  $CO_2/N_2$  binary mixture is defined as Eq. (S1).

$$S = \frac{x_1}{x_2} \times \frac{y_2}{y_1}$$
 (Eq.S1)

Where  $x_i$  and  $y_i$  represent the mole fraction of component *i* (*i* =1 or 2) in the adsorbed and bulk phases, respectively. In this work, component 1 represents CO<sub>2</sub>, while component 2 represents N<sub>2</sub>. Ideal adsorbed solution theory (IAST) is widely applied to predict the adsorption selectivities of binary gas mixtures from pure component isotherms, which is based on the principle that the adsorbate-adsorbent and adsorbate-adsorbate interactions are sufficiently ideal. In addition, an appropriate model used to fit pure-component isotherm is important to compute the integration required by IAST. Although there are no constraints on the choice of IAST models, the data should be fit precisely over the full range of pressure.

In this work, the experimentally measured loadings for  $CO_2$  were measured as a function of the absolute pressure at two different temperatures 273 and 298 K. The  $CO_2$  isotherm for were fitted with the Single-site Langmuir-Freundlich model.

$$q = q_{sat} \frac{bp^{\nu}}{1 + bp^{\nu}}$$
(Eq.S2)

Where q is the adsorbed amount in equilibrium with the concentration of adsorbate in the gas phase (mmol/g), p is the equilibrium pressure of the bulk gas with the adsorbed phase (kPa);  $q_{sat}$  is the saturation capacities of CO<sub>2</sub> or N<sub>2</sub> (mmol/g); b is the affinity coefficients of CO<sub>2</sub> or N<sub>2</sub> (1/kPa), respectively; and v is equal to  $^{1/n_1}$ , t is equal to  $^{1/n_2}$ , where  $n_1$  and  $n_2$  are the corresponding deviations from an ideal homogeneous surface. The Single-site Langmuir-Freundlich model was combined with the Ideal adsorbed solution theory (IAST) to predict the adsorption isotherms of the mixture and calculate the selectivity of the adsorbate.

**Table S1.** Single-site Langmuir-Freundlich parameters for adsorption of CO<sub>2</sub> in different TCKP-2-600 and TCKD-2-700.

| Sample     | $q_{sat}$ mmol/g | b <sub>0</sub><br>Pa <sup>-v</sup> | v<br>dimensionless |
|------------|------------------|------------------------------------|--------------------|
| TCKP-2-600 | 6.37828          | 1.26621                            | 1.00928            |
| TCKD-2-700 | 6.84578          | 0.91067                            | 1.19419            |

**Table S2.** Single-site Langmuir-Freundlich parameters for adsorption of  $N_2$  in different TCKP-2-600 and TCKD-2-700.

| Sample     | $q_{sat}$ | $b_0$            | v             |  |  |
|------------|-----------|------------------|---------------|--|--|
|            | mmol/g    | Pa <sup>-v</sup> | dimensionless |  |  |
| TCKP-2-600 | 3.91529   | 0.12787          | 0.96746       |  |  |
| TCKD-2-700 | 4.23783   | 0.06446          | 1.00227       |  |  |

| Biomass                    | Sample                      | Preparation method                           | $CO_2$ uptake (mmol/g at 1 bar) |       | S <sub>BET</sub> | V <sub>mic</sub> | CO <sub>2</sub> /N <sub>2</sub> | Coniol anarch on | Deferrer   |
|----------------------------|-----------------------------|----------------------------------------------|---------------------------------|-------|------------------|------------------|---------------------------------|------------------|------------|
|                            |                             |                                              | 0 °C                            | 25 °C | $(m^2/g)$        | $(cm^{3/g})$     | Selectivity                     | Serial number    | Keferences |
| Olive stones               | OS                          | single-step activation                       | 4.8                             | 3.0   | 1113             | 0.37             | 18                              | <b>S</b> 1       | [1]        |
| Almond shells              | AS                          | single-step activation                       | 3.7                             | 2.7   | 822              | 0.33             | 20                              | S2               | [1]        |
| Pomegranate peels          | PP                          | single-step activation                       | 6.03                            | 4.11  | 585              | 0.20             | 15.1                            | S3               | [2]        |
| Carrot peels               | СР                          | single-step activation                       | 5.64                            | 4.18  | 1379             | 0.51             | 8.1                             | S4               | [2]        |
| Fern leaves                | FL                          | single-step activation                       | 4.52                            | 4.12  | 1593             | 0.54             | 5.6                             | S5               | [2]        |
| Rice Husk                  | -                           | single-step activation                       | -                               | 3.10  | 1492             | 0.34             | 7.6                             | S6               | [3]        |
| Coffee grounds             | CG800-1                     | single-step activation                       | 7.18                            | 4.54  | 1692             | 0.68             | 17                              | <b>S</b> 7       | [4]        |
| Amazonian nutshells        | BNS                         | single-step activation                       | 5.14                            | 3.67  | 1532             | 0.44             | 46.9                            | <b>S</b> 8       | [5]        |
| Arundo donax               | KLB2                        | single-step activation                       | 6.3                             | 3.6   | 1122             | 0.50             | -                               | S9               | [6]        |
| Coconut Shell              | C-600-3                     | carbonization and KOH activation             | 6.04                            | 4.23  | 1172             | 0.43             | 22                              | S10              | [7]        |
| Microcrystalline cellulose | ACel-ac                     | carbonization and KOH activation             | 5.8                             | 3.7   | 753              | 0.27             | -                               | S11              | [8]        |
| Chestnut shell             | WS-600-0.6                  | carbonization and KOH activation             | 5.23                            | 3.61  | 1255             | 0.48             | 16                              | S12              | [9]        |
| Vine shoots                | BC-CO <sub>2</sub> -0.1-800 | carbonization and CO <sub>2</sub> activation | 3.45                            | 1.10  | 374              | 0.112            | 55.2                            | S13              | [10]       |
| Vine shoots                | AC-KOH-W-2-600              | carbonization and KOH activation             | 6.04                            | 1.21  | 1305             | 0.451            | 44.2                            | S14              | [10]       |
| Vine shoots                | AC-KOH-D-5-700              | carbonization and KOH activation             | 6.08                            | 1.98  | 1439             | 0.493            | 58.8                            | S15              | [10]       |
| Wheat                      | MCC-K3                      | carbonization and KOH activation             | 5.7                             | 3.48  | 1438             | 0.581            | 16                              | S16              | [11]       |
| Lotus seed                 | LSB3-800                    | carbonization and KOH activation             | 6.8                             | 3.1   | 2230             | 0.67             | -                               | S17              | [12]       |
| Peanut shell               | PC680                       | carbonization and KOH activation             | 7.25                            | 4.41  | 1713             | 0.73             | 7.9                             | S18              | [13]       |
| Fungi                      | PC-2                        | carbonization and KOH activation             | 5.5                             | 3.4   | 1742             | -                | 18.5                            | S19              | [14]       |
| Sawdust                    | AS-2-600                    | carbonization and KOH activation             | 6.1                             | 4.8   | 1260             | 0.55             | 5.4                             | S20              | [15]       |
| Coffee grounds             | NCLK3                       | carbonization and KOH activation             | 4.7                             | 3.0   | 840              | 0.36             | 13                              | S21              | [16]       |
| Africa palm Shells         | C600K3                      | carbonization and KOH activation             | 6.3                             | 4.4   | 1250             | 0.55             | -                               | S22              | [17]       |
| Polyurethane foam          | PUF-400-KOH-1-700           | N-doped activated                            | 6.67                            | 4.33  | 1516             | 0.57             | 12                              | S23              | [18]       |
| Fir bark                   | ACBK3                       | N-doped activated                            | 7.0                             | 5.2   | 1377             | 0.51             | 32.3                            | S24              | [19]       |
| Rice husk                  | CAC-5                       | N-doped activated                            | 5.83                            | 3.68  | 1495             | 0.447            | 15.3                            | S25              | [20]       |
| Phenolic resin             | RUK-600-3                   | N-doped activated                            | 7.13                            | 4.61  | 1404             | 0.53             | 12                              | S26              | [21]       |
| Arundo donax               | NDAB3-500                   | N-doped activated                            | 3.6                             | 2.1   | 1863             | 0.32             | -                               | S27              | [22]       |
| Alligator Weed             | NAB800-2                    | N-doped activated                            | 6.4                             | 5.4   | 3031             | 0.58             | -                               | S28              | [23]       |
| Lotus stalk                | LSC-500-1                   | N-doped activated                            | 5.62                            | 3.88  | 1113             | 0.41             | 22                              | S29              | [24]       |
| Tannic acid                | TCKP-2-600                  | carbonization and KOH activation             | 7.03                            | 4.29  | 1845             | 0.74             | 20.3                            |                  | This work  |

**Table S3**. CO2 adsorption performance of TCKP-2-600 and other adsorbents.

## References

- A.S. González, M.G. Plaza, F. Rubiera, C. Pevida, Sustainable biomass-based carbon adsorbents for post-combustion CO<sub>2</sub> capture, Chem. Eng. J. 230 (2013) 456-465.
- [2]. J. Serafin, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, Highly microporous activated carbons from biomass for CO<sub>2</sub> capture and effective micropores at different conditions, J. CO<sub>2</sub> Util. 18 (2017) 73-79.
- [3]. M. Li, R. Xiao, Preparation of a dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO<sub>2</sub> Capture, React. Fuel-Process. Technol. 186 (2019) 35-39.
- [4]. M.J. Kim, S.W. Choi, H. Kim, S. Mun, K.B. Lee, Simple synthesis of spent coffee ground-based microporous carbons using K<sub>2</sub>CO<sub>3</sub> as an activation agent and their application to CO<sub>2</sub> capture, Chem. Eng. J. 397 (2020) 1385-8947.
- [5]. J. Serafin, M. Ouzzine, O.F. C. Junior, J. Sreńscek-Nazzal, Preparation of low-cost activated carbons from amazonian nutshells for CO<sub>2</sub> storage, Biomass Bioenerg 144 (2021) 0961-9534.
- [6]. G. Singh, I.Y. Kim, K.S. Lakhi, P. Srivastava, R. Naidu, A. Vinu, Single step synthesis of activated bio-carbons with a high surface area and their excellent CO<sub>2</sub> adsorption capacity, Carbon 116 (2017) 448-455.
- [7]. J. Yang, L. Yue, X. Hu, O.L. Wang, Y. Zhao, Y. Lin, Y. Sun, H. DaCosta, L.P. Guo, Efficient CO<sub>2</sub> Capture by Porous Carbons Derived from Coconut Shell, Energy Fuels 31 (2017) 4287-4293.
- [8]. R.S. Dassanayake, C. Gunathilake, T. Jackson, Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose 23 (2016) 1363-1374.
- [9]. C. Quan, R. Su, N.B. Gao, Preparation of activated biomass carbon from pine sawdust for supercapacitor and CO<sub>2</sub> capture, Int J Energy Res.3 (2020) 1-17.
- [10]. J.J. Manyà, B. González, M. Azuara, G. Arner, Ultra-microporous adsorbents prepared

from vine shoots-derived biochar with high  $CO_2$  uptake and  $CO_2/N_2$  selectivity, Chem. Eng. J. 345 (2018) 631-639.

- [11]. S.M. Hong, E. Jang, A. Dysart, CO<sub>2</sub> Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments, Sci Rep 6 (2016) 34590.
- [12]. G. Singh, K.S. Lakhi, K. Ramadass, C.I. Sathish, A. Vinu, High-Performance Biomass-Derived Activated Porous Biocarbons for Combined Pre- and Post-Combustion CO<sub>2</sub> Capture, ACS Sustainable Chem. Eng. 7 (2019) 7412-7420.
- [13]. D. Li, Y. Tian, L. Li, Production of highly microporous carbons with large CO<sub>2</sub> uptakes at atmospheric pressure by KOH activation of peanut shell char, J Porous Mater 22 (2015) 1581-1588.
- [14]. J.C. Wang, A. Heerwig, Ma.R. Lohe, M. Oschatz, L. Borchardt, S. Kaskel, Fungibased porous carbons for CO<sub>2</sub> adsorption and separation, J. Mater. Chem. 22 (2012) 13911-13913.
- [15]. M. Sevillaa, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO<sub>2</sub> capture, Energy Environ. Sci. 4 (2011) 1765-1771.
- [16]. M.G. Plaza, A.S. González, C. Pevida, J.J. Pis, F. Rubiera, Valorisation of spent coffee grounds as CO<sub>2</sub> adsorbents for postcombustion capture applications, At. Energ. 99 (2012) 272-279.
- [17]. A. S. Ello, L.K. Souza, A. Trokourey, M. Jaroniec, Development of microporous carbons for CO<sub>2</sub> capture by KOH activation of African palm shells, J. CO<sub>2</sub> Util. 2013 (2) 35-38.
- [18]. C. Ge, J. Song, Z.F. Qin, J.G. Wang, W.B. Fan, Polyurethane Foam-Based Ultramicroporous Carbons for CO<sub>2</sub> Capture, ACS Appl. Mater. Interfaces 8 (2016) 18849-18859.

- [19]. L. Luo, T. Chen, Z. Li, Z. Zhang, W. Zhao, M. Fan, Heteroatom self-doped activated biocarbons from fir bark and their excellent performance for carbon dioxide adsorption, J. CO<sub>2</sub> Util. 25 (2018) 89-98.
- [20]. S. He, G.Y. Chen, H. Xiao, G.B. Shi, C.C. Ruan, Y.S. Ma, H.M. Dai, B.H. Yuan, X.F. Chen, X.B. Yang, Facile preparation of N-doped activated carbon produced from rice husk for CO<sub>2</sub> capture, J. Colloid Interface Sci. 582 (2021) 90-101.
- [21]. L.M. Yue, L.L. Rao, L.L. Wang, Y. Sun, Z.Z. Wu, H. DaCosta, X. Hu, Enhanced CO<sub>2</sub> Adsorption on Nitrogen-Doped Porous Carbons Derived from Commercial Phenolic Resin, Energy Fuels 32 (2) (2018) 2081-2088.
- [22]. G. Singh, I.Y. Kim, K.S. Lakhi, S. Joseph, P. Srivastava, R. Naidu, A, Vinu, Heteroatom functionalized activated porous biocarbons and their excellent performance for CO<sub>2</sub> capture at high pressure, J. Mater. Chem. A. 5 (2017) 21196-21204.
- [23]. G. Singh, R. Bahadur, J.M. Lee, I.Y. Kim, A.M. Ruban, J.M. Davidraj, D. Semit, A. Karakoti, H.A. Muhtaseb, A. Vinu, Nanoporous activated biocarbons with high surface areas from alligator weed and their excellent performance for CO<sub>2</sub> capture at both low and high pressures, Chem. Eng. J. 406 (2021) 1385-8947.
- [24]. L.L. Rao, L. Yue, L.L. Wang, Z.Z. Wu, C.D. Ma, L.Y. An, X. Hu, Low-Temperature and Single-Step Synthesis of N-Doped Porous Carbons with a High CO<sub>2</sub> Adsorption Performance by Sodium Amide Activation, Energy Fuels 32 (10) (2018) 10830-10837.