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Figure S1. (a-b) Comparison of TCKs-1-Y obtained at different activation temperature by gas 

adsorption/desorption analysis. (a-b) N2 sorption isotherms at -196 oC, (c-d) pore size distribution 

(PSD), PSD was calculated by NLDFT with the slit pore geometry assumption. (e-f) CO2 adsorption 

isotherms at 0 oC
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Figure S2. (a-b) Comparison of TCKs-3-Y obtained at different activation temperature by gas 

adsorption/desorption analysis. (a-b) N2 sorption isotherms at -196 oC, (c-d) pore size distribution 

(PSD), PSD was calculated by NLDFT with the slit pore geometry assumption. (e-f) CO2 adsorption 

isotherms at 0 oC
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S1. Supplementary experimental section 

The application of Ideal adsorbed solution theory (IAST) for calculating adsorption selectivity 

of CO2/N2

The adsorption selectivity is a significant parameter to evaluate the adsorption separation 

efficiency in the industrial processes. The adsorption selectivity of TCKs for CO2/N2 binary 

mixture is defined as Eq. (S1).
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Where xi and yi represent the mole fraction of component i (i =1 or 2) in the adsorbed and 

bulk phases, respectively. In this work, component 1 represents CO2, while component 2 

represents N2. Ideal adsorbed solution theory (IAST) is widely applied to predict the adsorption 

selectivities of binary gas mixtures from pure component isotherms, which is based on the 

principle that the adsorbate-adsorbent and adsorbate-adsorbate interactions are sufficiently 

ideal. In addition, an appropriate model used to fit pure-component isotherm is important to 

compute the integration required by IAST. Although there are no constraints on the choice of 

IAST models, the data should be fit precisely over the full range of pressure.

In this work, the experimentally measured loadings for CO2 were measured as a function 

of the absolute pressure at two different temperatures 273 and 298 K. The CO2 isotherm for 

were fitted with the Single-site Langmuir-Freundlich model.
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Where q is the adsorbed amount in equilibrium with the concentration of adsorbate in the 

gas phase (mmol/g), p is the equilibrium pressure of the bulk gas with the adsorbed phase (kPa); 

 is the saturation capacities of CO2 or N2 (mmol/g); b is the affinity coefficients of CO2 or 𝑞𝑠𝑎𝑡

N2 (1/kPa), respectively; and v is equal to , t is equal to , where  and  are the 1 𝑛1 1 𝑛2 𝑛1 𝑛2

corresponding deviations from an ideal homogeneous surface. The Single-site Langmuir-

Freundlich model was combined with the Ideal adsorbed solution theory (IAST) to predict the 

adsorption isotherms of the mixture and calculate the selectivity of the adsorbate.
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Table S1. Single-site Langmuir-Freundlich parameters for adsorption of CO2 in different 

TCKP-2-600 and TCKD-2-700. 

Sample
𝑞𝑠𝑎𝑡

mmol/g

b0

Pa-v

v

dimensionless

TCKP-2-600 6.37828 1.26621 1.00928

TCKD-2-700 6.84578 0.91067 1.19419

Table S2. Single-site Langmuir-Freundlich parameters for adsorption of N2 in different 

TCKP-2-600 and TCKD-2-700.

Sample
𝑞𝑠𝑎𝑡

mmol/g

b0

Pa-v

v

dimensionless

TCKP-2-600 3.91529 0.12787 0.96746

TCKD-2-700 4.23783 0.06446 1.00227



Table S3. CO2 adsorption performance of TCKP-2-600 and other adsorbents.
CO2 uptake

(mmol/g at 1 bar)Biomass Sample Preparation method
0 °C 25 °C

SBET 
(m2/g)

Vmic 
(cm3/g)

CO2/N2
Selectivity Serial number References

Olive stones OS single-step activation 4.8 3.0 1113 0.37 18 S1 [1]
Almond shells AS single-step activation 3.7 2.7 822 0.33 20 S2 [1]

Pomegranate peels PP single-step activation 6.03 4.11 585 0.20 15.1 S3 [2]
Carrot peels CP single-step activation 5.64 4.18 1379 0.51 8.1 S4 [2]
Fern leaves FL single-step activation 4.52 4.12 1593 0.54 5.6 S5 [2]
Rice Husk - single-step activation - 3.10 1492 0.34 7.6 S6 [3]

Coffee grounds CG800-1 single-step activation 7.18 4.54 1692 0.68 17 S7 [4]
Amazonian nutshells BNS single-step activation 5.14 3.67 1532 0.44 46.9 S8 [5]

Arundo donax KLB2 single-step activation 6.3 3.6 1122 0.50 - S9 [6]
Coconut Shell C-600-3 carbonization and KOH activation 6.04 4.23 1172 0.43 22 S10 [7]

Microcrystalline cellulose ACel-ac carbonization and KOH activation 5.8 3.7 753 0.27 - S11 [8]
Chestnut shell WS-600-0.6 carbonization and KOH activation 5.23 3.61 1255 0.48 16 S12 [9]
Vine shoots BC-CO2-0.1-800 carbonization and CO2 activation 3.45 1.10 374 0.112 55.2 S13 [10]
Vine shoots AC-KOH-W-2-600 carbonization and KOH activation 6.04 1.21 1305 0.451 44.2 S14 [10]
Vine shoots AC-KOH-D-5-700 carbonization and KOH activation 6.08 1.98 1439 0.493 58.8 S15 [10]

Wheat MCC-K3 carbonization and KOH activation 5.7 3.48 1438 0.581 16 S16 [11]
Lotus seed LSB3-800 carbonization and KOH activation 6.8 3.1 2230 0.67 - S17 [12]

Peanut shell PC680 carbonization and KOH activation 7.25 4.41 1713 0.73 7.9 S18 [13]
Fungi PC-2 carbonization and KOH activation 5.5 3.4 1742 - 18.5 S19 [14]

Sawdust AS-2-600 carbonization and KOH activation 6.1 4.8 1260 0.55 5.4 S20 [15]
Coffee grounds NCLK3 carbonization and KOH activation 4.7 3.0 840 0.36 13 S21 [16]

Africa palm Shells C600K3 carbonization and KOH activation 6.3 4.4 1250 0.55 - S22 [17]
Polyurethane foam PUF-400-KOH-1-700 N-doped activated 6.67 4.33 1516 0.57 12 S23 [18]

Fir bark ACBK3 N-doped activated 7.0 5.2 1377 0.51 32.3 S24 [19]
Rice husk CAC-5 N-doped activated 5.83 3.68 1495 0.447 15.3 S25 [20]

Phenolic resin RUK-600-3 N-doped activated 7.13 4.61 1404 0.53 12 S26 [21]
Arundo donax NDAB3-500 N-doped activated 3.6 2.1 1863 0.32 - S27 [22]
Alligator Weed NAB800-2 N-doped activated 6.4 5.4 3031 0.58 - S28 [23]

Lotus stalk LSC-500-1 N-doped activated 5.62 3.88 1113 0.41 22 S29 [24]
Tannic acid TCKP-2-600 carbonization and KOH activation 7.03 4.29 1845 0.74 20.3 This work
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