Appendix A

Carbon Capture from Corn Stover Ethanol Production via Mature CBP Enables Large Negative Biorefinery GHG emissions and Fossil Fuel-Competitive Economics

Matthew R. Kubis^{1,2}, Lee R. Lynd^{1,2}

¹Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA.

²The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.

*Correspondence: Lee.R.Lynd@Dartmouth.edu

Appendix A.1. Table 1. Survey of Technoeconomic Studies for Cellulosic Ethanol Production

	Study		Published (Project Year)	Feedstock	Process	Feed Cost (\$/dry metric	Ethanol (MGY)	MESP (\$)	Notes
NREL /TP- 580- 2615 7	EL P- Wooley et 5 al. (1)		1999 (1997)	yellow poplar	DAP	27.5	52.2	1.44	Biomass-to- ethanol
NREL /TP- 580- 2889 3	McAloon et al.	(2)	2000 (1999)	corn stover	DAP	38.5	25	1.50	Compares corn starch and stover
NREL /TP- 510- 3243 8	Aden et al.	(3)	2002 (2000)	corn stover	DAP	33.1	69.3	1.07	Stover-to- ethanol
NREL /TP- 6A2- 4658 8	Kazi et al.	(4)	2010 (2007)	corn stover	DAP	83.0	53.4	3.40	Compares four pretreatments, seven scenarios, and estimates pioneer plant
NREL /TP- 5100- 4776 4	Humbird et al.	(5)	2011 (2007)	corn stover	DAP	64.5	61.0	2.15	Stover-to- ethanol update
	Eggeman and	(6)	2005	corn stover	DAP	35.0	56.1	1.34	Compares pretreatments

Elander								and concludes DAP has best performance
Sendich et al.	(7)	2008	corn stover	AFEX	40.0	53.8	1.03 (SSCF)	Varies CBP and SSCF, AFEX parameters
Huang et al.	(8)	2009	corn stover	DAP	63.8	67.4	1.42	Varies biomass type and throughput
Klien- Marcusch amer et al.	(9)	2010 (2009)	corn stover	DAP	70.5	30.9	4.58	Wiki-based biorefinery platform
Bals et al.	(10)	2011 (2008)	corn stover	AFEX	50	23	1.86	Optimizes AFEX conditions
Meyer et al.	(11)	2013 (2007)	corn stover	нw	64.5	47.4	2.51	Varies yeast processes
Tao et al.	(12)	2013 (2007)	corn stover	DAP	64.5	59.0	2.21	Varies corn stover composition
Chen et al.	(13)	2015 (2007)	corn stover	DDR	64.5	64	2.24	Varies deacetylation and disk refining (DDR) technique
Yang and Rosentrat er	(14)	2015	corn stover	LMAA	36.3	50	3.86	Low Moisture Anhydrous Ammonia pretreatment
Zhao et al.	(15)	2015	corn stover	DAP	59.2	60.5	2.86	China specific economic data, compares NREL and Chinese status quo (NREL-CN- 1 data shown here)
Liu and Bao	(16)	2017 (2013)	corn stover	DryPB		60.1	1.79	Dry acid pretreatment and several others
Lynd et al.	(17)	2017 (2014)	corn stover	CBP	84.5	60.0	1.88	Forecasted C- CBP (reference case for this study)
Stoklosa et al.	(18)	2017 (2012)	corn stover	AFEX	60		2.09	Centralized v. decentralized corn stover processing depots
Huang et al.	(19)	2018 (2007)	corn stover	DAP	58.5	38.1	2.16	Modeled to breakeven while coproducing

								1,5-PDO
Shen, Tao, and Yang	(20)	2018 (2014)	corn stover	DAP	85.0	57.2	2.83	Modeled to breakeven while coproducing jet fuel from lignin
Yang et al.	(21)	2020 (2019)	sorghum	DAP	95.0		3.40	Concerns RNG and CO ₂ capture with onsite solids combustion
Das et al.	(22)	2022 (2018)	corn stover	DAP	64.5	61.4	2.47	Compares Humbird et al., 2011 model (updated to 2018) to Py- ECH

DAP = Dilute Acid Pretreatment, AFEX = Ammonia Fiber Expansion, DryPB = Dry Acid Pretreatment, LMAA = Low Moisture Anhydrous Ammonia, CBP = Consolidated Bioprocessing, HW = Hot Water, DDR = Deacetylation and Disk Refining. Py-ECH = pyrolysis with electrocatalytic hydrogenation.

Fermentation Conditions and Assumed Conversions									
F	Parameter	Original	Revised						
Tem	perature (°C)	5	5						
Initial So	lid Loading (wt.%)	19.5% total (59.7% carbohydrates, 23.8% insolubles, 16.5% extractives)							
Reside	nce Time (days)	6	6						
Corn Steep Liquor (CSL)	Loading (wt.%)	0.155	0.64						
Inorganic Nitrogen Loading	Loading (g/L)	0.261 (DAP)	0.387 (urea)						
Carbohydra	te Solubilization (%)	88	8						
	Total Conversion (%)	98.06							
Solubilized	Conversion to Products (%)	85.55							
Carbonyurales	Conversion to Cells (%)	4.75							
	Conversion to Byproducts (%)	4.7	75						
	Losses to Contamination (%)	3							
	Titer (g/L)	50.26							
Ethanol	Productivity (g/L-day)	8.36							
	Annual Production (MGY)	60.03							

Appendix A.2. Table 2. Fermentation Conditions and Assumed Conversions

Gas Turbine Conditions and Assumptions										
			This	Study						
	Parameters	References	Biogas Turbine	RNG Turbine						
	Scenarios	(this study)	&	V						
Ambient	Temperature (°C)	15 (23–25)	2	5						
Conditions	Pressure (bar)	1.013 (23–26)	1.0)13						
Fuel	Temperature (°C)	10 (25)	2	.8						
Conditions	Pressure (bar)	30 (25)	1.2	20						
	Air Feed Rate (kg/s)	635 (25) 651 (26)	18.1	17.6						
Inlet	Fuel Feed Rate (kg/s)	14.74 (25) 0.38 (24) 6.0 (23)	0.48	0.46						
	Pressure Ratio	15.4 (25) 15.6 (24) 18 (23) 17 .03 (26)	15.4							
Compressor	Mechanical Efficiency (%)	99 (25) 99.5 (24)	99							
	Isentropic Efficiency (%)	88 (23,25) 85.28 (24) 89.5 (26)	88							
Combustor	Combustion Efficiency (%)	99.5 (25) 99 (23) 99.1 (26)	99.5							
	Inlet Temperature (°C)	1328.0 (25) 1286 (24) 1232 (23) 1480 (26)	1342	1400						
Turbine	Exhaust Temperature (°C)	615.0 (25) 548.5 (24) 566 (23) 597.4 (26)	675	698						
	Exhaust Gas Rate (kg/s)	21.09 (24) 70.5 (23)	18.6	18.1						
	Isentropic Efficiency (%)	84.66 (24) 87 (23)	90							

Appendix A.3. Table 3. Gas Turbine Performance Parameters

		90 (26)			
Conorator	Concreter Efficiency (%)	98.5 (25)	98.5		
Generator	Generator Eniciency (%)	98 (24)			
		253,200 (25)			
	Net Power Generation	0.000	0 0 0 0 0		
	(kWh)	0,030	0,922		
Dorformonoo		270,494 (26)			
Fenomance		36.17 (25)			
	Thermal Efficiency (9()	33.13 (24)	27.0	20 6	
	36.0 (23)		37.0	30.0	
		38.2 (26)			

Parameters	Deng & Hägg (27) [scaled]	This Study
Raw Biogas Feed (Nm³/h)	1,000 [13,714]	13,714
Feed pressure (bar)	1.2	1.2
Feed CO ₂ concentration (vol.%)	35	47.8
Feed T and P at 1st and 2 nd stage (°C, bar)	25, 20	28, 20
Permeate T and P at 1st and 2 nd stage (°C, bar)	25, 1	28, 1
CH ₄ purity (vol.%)	98	98
CH ₄ recovery (%)	99.7	99.7
CO ₂ purity (vol.%)	98.1	99.4
Recycle Ratio	0.24	0.23
Compression duty (kWh)	220 [3,017]	3,043
Compressor Isentropic Efficiency (%)	0.75	0.88
Upgraded biomethane delivery pressure (bar)	40	20

Appendix A.4. Table 4. Biogas Membrane Upgrading Performance Parameters

Process design parameters													
Scenario		Enhanced heat integration	Biogas surplus to turbine	Fermentation CO ₂ to CCS	Biogas membrane upgrade to RNG	RNG surplus to turbine	Additional Inputs			Exports			GHG benefits
							17,463	kWh	electricity	7,137	gal/hr	ethanol	fuel pellets displace fossil fuels
	Reference case	no	no	no	no	no	3,028	kg/hr	nutrients	32 278	ka/br	fuel nellets	
							1,351	kg/hr	natural gas	52,270	Kg/III	idei pellets	
	Enhanced heat	Ves	no	no	no	no	17,463	kWh	electricity	7,132	gal/hr	ethanol	no longer consumes natural gas
_ ·	integration	yes		110	10	10	3,028	kg/hr	nutrients	32,300	kg/hr	fuel pellets	
l 11	Biogas electricity	Vec	Ves	no	no	no	8,845	kWh	electricity	7,132	gal/hr	ethanol	Net electricity demand reduced
	Biogas electricity	yes	yes	no	no	110	3,028	kg/hr	nutrients	32,300	kg/hr	fuel pellets	49%
	Biogas electricity						11,746	kWh	electricity	7,132	gal/hr	ethanol	Fermentation CO2 is now
111	and fermentation	yes	yes	yes	no	no	3 0 2 8	ka/br	nutrionte	32,300	kg/hr	fuel pellets	captured
	CO ₂ to CCS						3,020	ку/п	numents	21,080	kg/hr	CO ₂	
							11 746	k\M/b	oloctricity	7,132	gal/hr	ethanol	Biogas CO2 is now captured
N/	RNG and high-	1/00		200	1/00	20	11,740	K V VII	electricity	32,300	kg/hr	fuel pellets	RNG surplus displaces fossil
	purity CCS	yes	110	yes	yes	no	2 0 2 0	ka/br	putrionto	32,907	kg/hr	CO ₂	fuels
							3,020	ку/п	numents	830	kg/hr	RNG	
	PNC electricity and						11,746	kWh	electricity	7,132	gal/hr	ethanol	Net electricity demand reduced
V	high purity CCS	yes	no	yes	yes	yes	2 0 2 0	ka/br	nutrianta	32,300	kg/hr	fuel pellets	7%
		-					3,028	Kg/III	nutrients	32,907	ka/hr	CO ₂	

Appendix A.5. Table 5. Scenario Results Summary

Appendix A.6. Calculations for Levelized Cost of CO₂ Capture

CO₂ (fermentation only)

Equipment Contribution: 1) CO₂ compressor

 $6.68 MM\$_{CO2 \ compressor} \times 0.15_{capital \ charge \ factor} = 1.00 MM\$_{annualized \ capital \ cost}$

Electricity Contribution:

 $2,841 \, kWh_{CO2 \, compressor \, demand} \times 0.0681 \frac{\$}{kWh} = 193.47 \frac{\$}{hour}$

 $193.5 \frac{\$}{hour} \times 8,410 \frac{hours}{year} = 1.62 MM\$_{annual electric demand}$

Sum of Contributions:

1.00 MM\$_{annualized capital cost} + 1.62 MM\$_{annual electric demand} = 2.62 MM\$_{annualized cost}

Annual CO₂ Production: 177,209 ton/year

2.12
$$MM\$_{annualized \ cost} \div 177,209 \frac{ton}{year} = 14.78 \frac{\$}{ton} CO_2$$

CO₂ (fermentation & biogas combined)

Equipment Contribution: 1) CO₂ compressor

 $8.68 MM\$_{CO2 \ compressor} \times 0.15_{capital \ charge \ factor} = 1.30 MM\$_{annualized \ capital \ cost}$

Electricity Contribution:

 $4,364 \, kWh_{CO2 \, compressor \, demand} \times 0.0681 \frac{\$}{kWh} = 297.18 \frac{\$}{hour}$

 $297.18 \frac{\$}{hour} \times 8,410 \frac{hours}{year} = 2.50 MM\$_{annual \ electric \ demand}$

Sum of Contributions:

1.30 MM\$_{annualized capital cost} + 2.50 MM\$_{annual electric demand} = 3.80 MM\$_{annualized cost}

Annual CO₂ Production: 276,659 ton/year

 $3.80 MM\$_{annualized cost} \div 276,659 \frac{ton}{year} = 13.74 \frac{\$}{ton} CO_2$

Appendix A.7. Fuel Pellet Production Sensitivity Analysis.

It was observed that increasing or decreasing fuel pellet selling prices has a uniform effect on the MESP related to equal fuel pellet throughput amongst the scenarios. To put it another way, the modifications made to improve the biorefinery GHG balance did not change the MESP's sensitivity towards fuel pellet selling prices. A 20% change (+ or -) in fuel pellet price (baseline \$166/ton) did not change the MESP by 20% which is consistent with fuel pellet revenue making up less than half of total revenue in Figure 3.B.

In a second sensitivity analysis, the fuel pellet contribution to avoided fossil fuel emissions (AFFE) in figure 4 are subject to + or -20%. Since the later scenarios have greater negative carbon flux overall, any perturbation to the fuel pellet AFFE (consistent amongst all scenarios) will be effectively diluted out by the larger contributions enabled by CCS. Thus, later scenarios are less sensitive to the fuel pellet AFFE than those without CCS.

Appendix A References

- Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios [Internet]. Golden, CO; 1999 Jul [cited 2022 Sep 25]. Available from: https://www.osti.gov/biblio/12150
- Mcaloon A, Taylor F, Yee W, Ibsen K, Wooley R. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks [Internet]. Golden, CO; 2000 Oct [cited 2022 Sep 25]. Available from: https://www.osti.gov/biblio/766198
- Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, et al. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover [Internet]. Golden, CO; 2002 Jun [cited 2022 Sep 25]. Available from: https://www.osti.gov/biblio/1218326
- Kazi KF, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, et al. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol [Internet]. Golden, CO; 2007 [cited 2022 Sep 25]. Available from: https://www.osti.gov/biblio/982937
- Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover [Internet]. Golden, CO; 2011 May. Available from: https://www.osti.gov/biblio/1013269
- 6. Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Bioresour Technol. 2005;96(18 SPEC. ISS.):2019–25.
- Sendich E (Newton), Laser M, Kim S, Alizadeh H, Laureano-Perez L, Dale B, et al. Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol. 2008 Nov;99(17):8429–35.
- Huang HJ, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenergy. 2009 Feb;33(2):234–46.
- Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy. 2010 Dec;34(12):1914–21.
- 10. Bals B, Rogers C, Jin M, Balan V, Dale B. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels. 2010 Dec 4;3(1):1.
- 11. Meyer PA, Tews IJ, Magnuson JK, Karagiosis SA, Jones SB. Techno-economic analysis of corn stover fungal fermentation to ethanol. Appl Energy. 2013;111:657–68.
- 12. Tao L, Templeton DW, Humbird D, Aden A. Effect of corn stover compositional variability on minimum ethanol selling price (MESP). Bioresour Technol. 2013;140:426–30.
- 13. Chen X, Shekiro J, Pschorn T, Sabourin M, Tucker MP, Tao L. Techno-economic analysis of the deacetylation and disk refining process: Characterizing the effect of refining energy and enzyme

usage on minimum sugar selling price and minimum ethanol selling price. Biotechnol Biofuels. 2015 Oct 29;8(1).

- 14. Yang M, Rosentrater KA. Techno-economic analysis (TEA) of low-moisture anhydrous ammonia (LMAA) pretreatment method for corn stover. Ind Crops Prod. 2015 Dec 5;76:55–61.
- 15. Zhao L, Zhang X, Xu J, Ou X, Chang S, Wu M. Techno-economic analysis of bioethanol production from lignocellulosic biomass in china: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies (Basel). 2015;8(5):4096–117.
- 16. Liu G, Bao J. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol. Bioresour Technol. 2017;245:18–26.
- 17. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, et al. Cellulosic ethanol: status and innovation. Vol. 45, Current Opinion in Biotechnology. Elsevier Ltd; 2017. p. 202–11.
- Stoklosa RJ, del Pilar Orjuela A, da Costa Sousa L, Uppugundla N, Williams DL, Dale BE, et al. Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes. Bioresour Technol. 2017 Feb 1;226:9–17.
- 19. Huang K, Won W, Barnett KJ, Brentzel ZJ, Alonso DM, Huber GW, et al. Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. Appl Energy. 2018 Mar 1;213:585–94.
- 20. Shen R, Tao L, Yang B. Techno-economic analysis of jet-fuel production from biorefinery waste lignin. Biofuels, Bioproducts and Biorefining. 2019 May 1;13(3):486–501.
- 21. Yang M, Baral NR, Anastasopoulou A, Breunig HM, Scown CD. Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries. Environ Sci Technol. 2020 Oct 20;54(20):12810–9.
- Das S, Anderson JE, De Kleine R, Wallington TJ, Jackson JE, Saffron CM. Technoeconomic analysis of corn stover conversion by decentralized pyrolysis and electrocatalysis. Sustain Energy Fuels. 2022 May 6;6(11):2823–34.
- 23. Lan W, Chen G, Zhu X, Wang X, Liu C, Xu B. Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS. Science of the Total Environment. 2018 Jul 1;628–629:1278–86.
- 24. Kang DW, Kim TS, Hur KB, Park JK. The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems. Appl Energy. 2012;93:215–28.
- 25. Liu Z, Karimi IA. Simulating combined cycle gas turbine power plants in Aspen HYSYS. Energy Convers Manag. 2018 Sep 1;171:1213–25.
- 26. Niu M, Xie J, Liang S, Liu L, Wang L, Peng Y. Simulation of a new biomass integrated gasification combined cycle (BIGCC) power generation system using Aspen Plus: Performance analysis and energetic assessment. Int J Hydrogen Energy. 2021 Jun 23;46(43):22356–67.

27. Deng L, Hägg MB. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control. 2010;4(4):638–46.