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pyro-photo-electric catalysis and photoelectrochemical measurements

To evaluate how the interface affects pyro-photo-electrical catalysis performance, 

the process is studied in the three-electrode system with a 0.5 M Na2SO4 electrolyte 

solution at a scan rate of 0.1 V s-1. In the three-electrode system, the temperature 

change (ΔT = 20℃-50 ℃) is achieved by water bath method, two different temperature 

baths of 20°C and 50°C are prepared for accelerating the heating and cooling the 

electrolyte. Fig. S4 gives an ideal temperature change curve, the scanning rate of the 

electrochemical workstation is determined by the rate of temperature change set by the 

curve. The Light conditions achieved with a 300 W xenon lamp equipped with an AM 

1.5 G filter (100 mW·cm-2). The Platinum wire is used as an auxiliary electrode, 

Ag/AgCl is used as a reference electrode, FTO with a coating area of approximately 1 

cm2 is used as the working electrode. The mechanism diagram of the catalysis process 

and the energy band structure diagram of heterojunctions are shown in Fig. S5. The 

relationship between potential and reversible hydrogen electrode (RHE) is calculated 

by Nernst equation (1):1 

ERHE = EAg/AgCl + 0.0591 pH + 0.1976 V               (1)

ABPE is calculated by equation (2). Where J means photocurrent density 

(mA/cm2), VRHE is the correlation of potential and RHE, and incident light irradiance 

(mW/cm2) is expressed by Plight.2

                    (2)
ABPE =  

JPh (1.23 - VRHE)

Plight

The IPCE of samples can be directly characterized by equation (3). Where λ means 

incident light wavelength (nm). Plight indicates the incident monochromatic light 

intensity (mW/cm2), and λ represents wavelength (nm).3 

                           (3)
IPCE =  

1240J
𝜆𝑃light

Vfb, Nd and Wdep are calculated by the equation (4-6). Where C means the space 

charge capacitance(1.602×10-19 C), KB represents Boltzmann constant (1.38 × 10-23 

J/K), T indicates Kelvin temperature, ε and ε0 are the relative permittivities (8.834×10-

12 F/m) and the permittivity of vacuum(300) of CdS, e represents elementary charge 

and A is coated electrode area, the bias voltage applied to the electrodes is expressed by 
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                      (5)
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εε0e

[

d(
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)
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] - 1

                       (6)
Wdep =  

2εε0(V ‒ Vfb)

qNd

The ηbulk and ηsurface of the working electrodes are computed according to the 

equations below:7

JH2O = Jabs × ηbulk × ηsurface                    (7)

JH2O stands for photocurrent density, and Jabs refers to photon absorption 

represented by current density (100 % photocurrent of APCE is assumed). After adding 

0.25 M Na2SO3 as the hole scavenger in 0.5 M Na2SO4, surface recombination of 

carriers is inhibited, and ηsurface can be considered for 100 %. Therefore, in the case of 

hole scavenger addition, the photocurrent density is decided by equation (8).2

JNa2SO3 = Jabs × ηbulk                       (8)

So, the ηbulk and ηsurface are calculated by equations (9) and (10)：

ηbulk = JNa2SO3/Jabs                         (9)

ηsurface = JH2O/JNa2SO3                      (10)
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Fig. S1 The asymmetric crystal structure of CdS(a) and Sb2S3(b)

Fig. S2 EDS image of H-CdS/Sb2S3(a), and I-CdS/Sb2S3(b)

Fig.S3 EIS of different photoanode samples under the photoelectric catalysis (a), 
pyro-photo-electric catalysis(b) 
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Fig.S4 The ideal temperature curve for cold-hot thermal cycles 

Fig. S5 Mechanism diagram of CdS/Sb2S3 heterojunctions

Tab. S1 Flat band potential (Vfb) and donor density (Nd) of electrodes deduced from 

Mott-Schottky

Light Light+△TCondition
Sample Vfb (V vs RHE) Nd (cm-3) Vfb (V vs RHE) Nd (cm-3)

CdS 0.29 9.20×1015 0.24 8.16×1016

H-CdS/Sb2S3 0.16 4.70×1016 -0.21 5.52×1017

I-CdS/Sb2S3 0.10 2.04×1017 -0.34 8.85×1017
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Tab. S2 Wdep of electrodes deduced from Mott-Schottky

Condition
Sample

Light Light+△T

CdS

H-CdS/Sb2S3

I-CdS/Sb2S3

2.23×10-3nm

8.69×10-4 nm

4.28×10-4 nm

6.36×10-4 nm

2.94×10-4 nm

2.43×10-4 nm
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