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ADOPT 28 

Three triggers instigate the creation of new vehicle options. One trigger creates new variations of a vehicle 29 
when it sells exceptionally well for its price. Another creates additional options for several years when a 30 
new powertrain is introduced. A third creates new options for the best-selling powertrain. Poorly selling 31 
options are discontinued by ADOPT. New vehicle options are created by copying high-selling models and 32 
optimizing the component sizing based on future-year conditions to achieve the best-selling combination 33 
of vehicle attributes in new model options. The best-selling powertrains evolve the most over time. 34 

Cost and performance specifications of new vehicles include assumptions about the evolution of battery, 35 
fuel cell, hydrogen storage, motor, and compression ignition engine technology. Figures A1-A3. show key 36 
technology cost and performance assumptions used in ADOPT for this analysis. 37 

38 
Figure A1. Battery and Motor Technology Cost and Performance Assumptions for the No Program and 39 
Program Success Cases 40 



3 

41 

Figure A2. Fuel Cell and Hydrogen Storage Technology Cost and Performance Assumptions for the No 42 
Program and Program Success Cases 43 

44 
Figure A3. Compression Ignition Engine Peak Efficiency Assumptions for the No Program and Program 45 
Success Cases 46 

Fuel prices used in this analysis are shown in Figure A4 for diesel, electricity, and hydrogen. Diesel and 47 
electricity price inputs were the same for all cases and were based on prices from the EIA Annual Energy 48 
Outlook (AEO) 2021 Reference Case.1 Hydrogen prices differed between the No Program and Program 49 
Success cases and were set by the Hydrogen Fuel Cell Technology Office. Co-optimized fuel prices were 50 
set equal to diesel prices on a per gallon basis. 51 



52 

Figure A4. Diesel, Electricity, and Hydrogen Prices used in ADOPT scenarios for the No Program and 53 
Program Success Cases 54 

Job Analysis Methodology 55 

Economic impact analysis is often used to calculate changes in employment, income, and tax revenues 56 
that could result from new or existing economic activities.2-3 The fundamental rationale behind economic 57 
impact analysis is that changes in economic activity are multiplied through the entire economy because 58 
of inter-sectorial linkages, i.e., flows of commodities and services between sectors. In other words, a 59 
change in inputs required for production in one sector results in a cascading change in demand throughout 60 
its upstream supply chain that involves all the supply-chains of each input supplier, ultimately affecting all 61 
sectors of the economy (with various degrees of intensity). Input-output analysis is one of the most 62 
commonly used approaches to tracking the ripple effects of changes in economic activity throughout an 63 
economy.3 64 

Input-output analysis has been widely used to assess the contribution of existing energy sectors in the 65 
U.S. economy.4-7 In modeling the what-if scenarios, where a new industry is assumed to be introduced to66 
the existing economy in the future, input-output analysis has also been widely applied. For instance, a 67 
study from IHS Markit2 evaluated the expansion of unconventional oil and natural gas from 2012-2025 in 68 
terms of GDP, employment, and tax revenue contributions to the U.S. economy. In that work, expected 69 
capital investments (expenditures in equipment and buildings) and changes to production linked to the 70 
sector were used as shocks in the economy to determine annual impacts. Similarly, Lamers et al. estimated 71 
the economic and environmental impacts of a future 5 billion gallon cellulosic ethanol industry from two 72 
pathways (biochemical and thermochemical), using the same model employed in this paper (BEIOM).8 Net 
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impacts were estimated by displacing gasoline on an energy basis. The approach used in Lamers et al.8 is 74 
similar to the one used in this paper to evaluate net direct and indirect effects. Jackson et al. estimated 75 
the impact of introducing three different pathways using woody biomass as their main feedstocks in a 76 
rural area in central Appalachia.9 A meta-analysis of studies looking at the impact of different advanced 77 
biofuels pathways is also available from bio-era.10 78 

To estimate the employment impacts resulting from the adoption of new MCCI bio-blendstocks, we 79 
expanded the original Bio-based circular carbon economy Environmentally-extended Input-Output 80 
Model, or BEIOM with new pathway-specific sectors.11 We did this by leveraging the most up-to-date cost 81 
data (e.g., from techno-economic analysis) along with feedstock production and logistics data from BSM 82 
outputs to model the supply chain and relevant expenditures associated with each bio-blendstock 83 
pathway examined in this analysis. 84 

BEIOM is a demand-driven input-output model (a commonly used method in economic impact analysis) 85 
that estimates the economic effects, including new jobs created, from the expenditures made by 86 
biorefineries during their construction and operation phases. Input-output analysis requires a detailed 87 
accounting of expenditures and proper allocation of each expenditure to the impacted sectors within an 88 
economy. The economic sectors affected by each expenditure are identified by matching the description 89 
of the expenditure (e.g., type of equipment purchased and installed) with the North American Industry 90 
Classification System (NAICS).  NAICS is a standard used by federal agencies (e.g., U.S. Bureau of Economic 91 
Analysis) to classify business establishments for the purpose of collecting and analyzing statistical data 92 
related to the U.S. economy. BSM/ADOPT simulation results such as changes in demand for MCCI bio-93 
blendstocks are used to inform the model inputs to BEIOM for estimating the jobs impacts. 94 

In addition to quantifying the new jobs that would be created by growth in demand for MCCI bio-95 
blendstocks, the employment change in the mature petroleum industry resulting from the change in 96 
petroleum consumption (estimated by ADOPT/BSM) is also considered in the model. To estimate the 97 
potential employment change in the petroleum industry due to the introduction of new bio-blendstocks, 98 
we modified the underlying input-output table used in BEIOM to account for the new production levels 99 
of diesel and substitution between diesel and the new biofuel blendstock. Fuel substitution in each sector 100 
is performed on an energy basis and then converted into dollar values, similar to the approach employed 101 
in Lamers et al.8 102 

The BEIOM model used in this study is based on the national 2012 input-output benchmark table from 103 
the U.S. Bureau of Economic Analysis, which includes 405 commodities and 405 sectors.12 The model is in 104 
constant 2012 prices. Employment data are based on the National Income and Products Accounts for 2017 105 
and comprise two metrics: full-time equivalent jobs and full-time plus part-time jobs.13 The former 106 
provides a lower bound for our estimates, while the latter, an upper bound. For this analysis, we focus on 107 
direct and indirect (ripple effects throughout different supply-chains) job effects. 108 

To better capture fuel substitution effects, the outputs from the petroleum refining sector were further 109 
disaggregated into diesel, gasoline, jet fuel, kerosene, and other petroleum refineries’ products.8 BEIOM 110 
also has disaggregated sectors for corn ethanol and soybean biodiesel supply chains.11 Following the same 111 
approach described in Lamers et al.8, additional biofuel pathways were introduced into BEIOM based on 112 
techno-economic analysis (TEA) for each pathway as shown in Table A1. All MCCI pathways were created 113 
using nth-plant assumptions. Operation and construction expenses were derived from the TEAs and 114 
encompass equipment, buildings, raw and intermediate materials, and direct labor requirements (for 115 



plant operation). These itemized expenses were then matched to the commodity- level aggregation in 116 
117 BEIOM. 

118 Table A1. Additional MCCI bio-blendstock pathways introduced in BEIOM 

MCCI Bioblendstock Feedstock nth Plant  
Size 
(MMgal/
yr)* 

Data Source 

POME Forestry Residue 55.0 Dutta et al.14 

AAEE Corn Stover 53.7 
HEFA Swine HTL Swine Manure 28.0 Snowden-Swan et al.15 

Sludge HTL Sludge 28.0 Snowden-Swan et al.15 

FOG via HEFA Used Cooking Oil 34.2 Tao et al.16 

*Bio-blendstock actual production per year.119 

As illustrated in Figure 2 in the main manuscript, BEIOM uses external information generated from 120 
BSM/ADOPT to simulate technology change, fuel substitution, and production levels in each year. 121 
Construction impacts are based on the number of new biorefineries projected (by BSM) to be built to 122 
produce bio-blendstocks to meet demand. We assume a typical 3-year construction spending schedule 123 
(Year 1, 8%; Year 2, 60%; Year 3, 32%), with the plant fully operational by Year 4. Construction costs and 124 
itemization are technology-specific (Table A2) and are scaled from an nth size plant according to the actual 125 
size provided by BSM. The average yield of the biorefineries’ portfolio in each year is used to scale the 126 
variable costs of biorefineries in BEIOM. Total fuel production informs the required production levels for 127 
each year. Demand is then allocated between final demand and sectors according to the consumption 128 
structure of 2012 for diesel and any substitution effect is done on an energy basis. The BEIOM model 129 
accounts for changes in fuel yield for each bio-blendstock pathway over time according to outputs from 130 
the BSM model, modifying the production function of the industry, which produces the biofuel. 131 

Table A2. Construction, annual O&M costs, and jobs per plant by pathway 132 

MCCI 
Bioblendstock 

Construction  
(million 2012$) 

Annual O&M 
(million 2012$) 

Direct Jobs 

POME $ 372 $ 179 62 
AAEE $ 437 $ 164 60 
HEFA Swine HTL $ 592 $ 153 46 
Sludge HTL $ 474 $ 139 46 
FOG via HEFA $ 184 $ 205 60 

133 
We estimate net employment impacts, defined as the difference in the number of annual full-time 134 
equivalent jobs under each scenario compared to the BAU, considering the employment effect in the 135 
relevant biofuel and petroleum sectors. Job effects account for both construction and operation in each 136 
year and are estimated at the national level. Net effects reflect reduced employment from conventional 137 
diesel production and the positive effect from the deployment and expansion of MCCI bio-blendstocks. 138 
Production volumes for each type of fuel and construction schedules are provided by BSM. 139 
It is worth noting that an Input-output model such as BEIOM can only estimate change in number of jobs 140 
due to a change in demand for a product. Therefore, the estimated change in jobs reflects the demand 141 
side rather than job supply or availability of labor force, which meets the desired skills. The occupational 142 
dataset we are currently adding to our model will allow us to breakdown total job numbers by occupations 
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and their respective wages, skill levels, education, and training requirements, but these will represent 144 
demand for workers. The availability of skilled workers will depend on locations and other factors and is 145 
not addressed in the paper as it is beyond the scope of our model. 146 

Additional Information on the Biomass Scenario Model (BSM) 147 

Techno-economic characteristics change over time in the BSM, as the industry matures with more 148 
biorefineries being built.  The BSM takes nth-plant conversion costs and uses a learning curve calculation, 149 
along with current technology maturity, to determine the modeled annual cost for constructing and 150 
operating the biorefineries. Costs and yields for the specific conversion technologies improve over time 151 
as more biorefineries are built.17 More information on BSM logic, including learning curves, can be found 152 
in Peterson et al.18153 

Also, in addition to MCCI fuel pathways, the BSM model includes currently available biofuel pathways 154 
(biodiesel from transesterification and starch ethanol) and other feedstocks (dairy manure, food waste, 155 
algae) and conversion technologies (e.g., indirect liquefaction, catalytic fast pyrolysis, fermentation) that 156 
could be available in the future. These technologies can produce fuels other than diesel (i.e., gasoline, jet 157 
fuel, bio-oil). 158 

Carbon Tax Additional Information 159 

The level of tax required to offset the energy density difference is different for each bio-blendstock. 160 
Among the MCCI fuels, only POME has the potential for an engine efficiency gain, but it is estimated at a 161 
modest 1%. With an energy density of only about 62% that of diesel fuel, POME fuel as a replacement for 162 
diesel will lead to the largest fuel economy decline, despite the small engine efficiency gain. Renewable 163 
diesel via Sludge HTL, HEFA, and swine manure HTL have energy densities that are comparatively closer 164 
to that of diesel. Renewable diesel via Sludge HTL has about 3% fewer BTUs per gallon, FOG has about 6% 165 
fewer BTUs per gallon, and swine manure has only about a 3% difference in BTUs per gallon. The 166 
implication is that RD―via Sludge HTL, FOG, and swine manure―could be cost competitive with diesel 167 
under smaller price differentials than the other fuels would require. 168 

We considered several tax structures (Figure A5) and compared adoption results. Tax structure 1 had an 169 
initial cost penalty of $15/metric ton of CO2 emissions, which increased at a linear rate of $10 per year. 170 
Tax structure 2 had an initial cost penalty of $35/metric ton of CO2 emissions and increased at a rate of 171 
5% year over year, resulting in a steeper rise each consecutive year. Tax structure 3 had an initial cost 172 
penalty of $52/metric ton of CO2 emissions and increased at a linear rate of $1.06 per year. Tax structure 173 
3 resulted in a smooth adoption curve for co-optimized vehicles, and was applied to the carbon tax ADOPT 174 
scenarios. 175 
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176 

Figure A5. Tax structure considered for petroleum tailpipe emissions. 177 

We performed trial runs in the ADOPT model to examine the effects of each tax structure on vehicle sales 178 
and to determine under which structure co-optimized fuels would be price competitive, not only with 179 
diesel fuel but also with fuel cell and battery electric vehicles. Fuels at the lower range of energy density 180 
(such as POME) were not price competitive under any tax structure. If too little tax was applied, POME 181 
was not price competitive with diesel. However, if too great a tax was applied, fuel cells and battery 182 
electric vehicles saw more sales benefits than co-optimized vehicles. In this analysis, co-optimized fuel 183 
was blended with diesel fuel, and so a tax on diesel fuel still increased the operating costs of co-optimized 184 
powertrains in relation to powertrains that do not rely on diesel fuel at all (fuel cells and battery electric 185 
vehicles). For the higher energy density fuels, imposing a sales tax on diesel fuel CO2 emissions could offset 186 
the slightly higher price per BTU of the co-optimized bio-blendstock without increasing the diesel 187 
fraction’s price so significantly that the fuel cell and BEVs become more affordable than the co-optimized 188 
vehicles. The ADOPT sales results are shown for Scenario 1.3 Renewable Diesel via Sludge HTL (Figure A6). 189 

190 
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Figure A6. CO2 tax scenario results 191 

In the scenario with no carbon tax, we see very limited adoption of co-optimized vehicles (maximum of 192 
16% of total annual vehicle sales). In the “Tax 1” scenario (which had the highest tax on diesel CO2 193 
emissions) we see rapid increases in the sales of co-optimized vehicles until about 2040, at which point 194 
fuel cells begin to displace co-optimized sales. In the “Tax 2” case, we again see a rapid increase in the 195 
sales of co-optimized vehicles, which continues mostly through 2050 except for during the period in the 196 
early to mid-2040s. In the “Tax 3” case, we see a smoother and more gradual increase in the sales of co-197 
optimized vehicles per year, and this tax was selected for the ADOPT carbon tax scenarios. 198 

Vehicle Analysis Additional Results 199 

The carbon tax helps co-optimized vehicles to compete with diesel powertrains only. Electric vehicles and 200 
fuel cell vehicles (powertrains that consume no diesel fuel) are not affected by this carbon tax. Under the 201 
price and blend fraction assumptions in this analysis, for some of the lower energy density fuels there is 202 
no tax level at which co-optimized vehicles can outcompete both diesel and other alternative powertrains. 203 
If the tax level is set high enough to price-advantage co-optimized vehicles over 100% diesel vehicles, then 204 
it is also set too high for co-optimized vehicles to compete with BEVs and fuel cells. In order to drive sales 205 
of vehicles powered by POME and AAEE, the prices of these fuels would need to be reduced to 206 
compensate for the energy density differences, or the blend fraction would need to be increased and a 207 
carbon tax at a high enough level would need to be imposed. 208 

209 
Figure A7. Annual vehicle sales 2020-2050 for different carbon tax scenarios 210 

Job Analysis Additional Results 211 
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212 
Figure A8. Net jobs (FTE) by MCCI bio-blendstock, diesel market, breakdown, POME 213 

214 
Figure A9. Net jobs (FTE) by MCCI bio-blendstock, diesel market, breakdown, AAEE 215 

216 
Figure A10. Net jobs (FTE) by MCCI bio-blendstock, diesel market, breakdown, HEFA swine HTL 217 

218 
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219 
Figure A11. Net jobs (FTE) by MCCI bio-blendstock, diesel market, breakdown, sludge HTL 220 

Sensitivity Analysis 221 

Table A3. Key modeling assumptions for the optimistic and pessimistic bounding cases of each scenario 222 

Scenario 1 Scenario 2 Scenario 3 

Optimistic, 
Upper 
Bound 

Pessimistic, 
Lower 
Bound 

Optimistic, 
Upper 
Bound 

Pessimistic, 
Lower 
Bound 

Optimistic, 
Upper 
Bound 

Pessimistic, 
Lower 
Bound 

MCCI Bio-blendstocks AAEE AAEE FOG via 
HEFA and 
Swine 
manure 
HTL  

 FOG via 
HEFA and 
Swine 
manure 
HTL  

AAEE AAEE 

ADOPT Key 
Variables 

Blend fraction 30% 10% 30% 10% 30% 10% 

Co-optimized 
engine 
efficiency 
improvement 

0% 0% 0% 0% 0% 0% 

Incremental 
cost 

$100  $1,000  $100  $1,000  $100  $1,000  

Aftertreatment 
cost reduction  

($4,932) ($4,563) ($4,932) ($4,563) ($4,932) ($4,563) 

Tech targets Baseline 
Tech 
Goals 

Tech 
Success 

Aggressive 
Goals 

Baseline 
Goals 

Aggressive 
Goals 

Baseline 
Goals 

Price of Co-
optimized fuel 
assumption 

Diesel Diesel Diesel 

Prices of 
conventional 
fuels   

2021 TDA 2021 TDA  2021 TDA 
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BSM Key 
Variables 

Policy effects RFS RINs 
& LCFS 
credits: 
Base - 
Included 

RFS RINs & 
LCFS 
credits: 
Sensitivity - 
Excluded 

RFS RINs 
& LCFS 
credits: 
Base - 
Included 

RFS RINs & 
LCFS 
credits: 
Sensitivity - 
Excluded 

RFS RINs & LCFS credits: 
Included for more/all 
regions  

Biorefineries 
are Built to 
Meet Demand 

Yes  No Yes No Yes No 

Consumer 
price 
sensitivity 

High Expected High Expected High Expected 

Capital cost of 
refineries 

Low High Low High Low High 

Maximum 
number of 
biorefineries 
built per year 

Unlimited 25 Unlimited 25 Unlimited 25 

Rate of return 
required from 
biorefinery 
investors 

Low High Low High Low High  

Bioeconomy 
AGE Key 

Variables 

Feedstock 
type 

Corn 
stover 

Corn 
stover 

FOG Swine 
manure 

Corn 
stover 

Corn 
stover 

Life-cycle GHG 
Emissions 
(g CO2e/MJ) 

 32.5  32.5 11.2 -31.5  32.5  32.5 

223 
We perform sensitivity analysis with AAEE and HEFA swine HTL RD as the bio-blendstocks considering a 224 
pessimistic case and an optimistic case (Table A3) with carbon tax and with carbon tax and high RD. 225 

With carbon tax case 226 

The GHG emissions for the BAU and sensitivity cases is given in Figure A12. In the pessimistic case, 227 
although the blending level of AAEE bio-blendstock is lowered to 10%, the excess supply of AAEE above 228 
the demand by the co-optimized vehicles coupled with greater success and progress in conventional 229 
vehicle technologies relative to the MCCI vehicles results in ~23% reduction in GHG emissions relative to 230 
the BAU with carbon tax. This reduction is primarily driven by the decrease in fuel use in the AAEE 10% 231 
scenario due to higher vehicle fuel economy driven by technology success, with about 10% of the benefit 232 
associated with the bio-blendstock. Compared to AAEE scenario, emissions reduction in the HEFA swine 233 
HTL with a 10% blending level reach ~7% in 2050 relative to BAU, with the primary driver being the bio-234 
blendstock. 235 

In the optimistic case, GHG emissions decrease by ~12% (given a 15% market share of AEE in 2050 at a 236 
30% blending level combined with excess production consumed by the conventional vehicles) in the AAEE 237 
scenario and a 34.4% reduction in the HEFA swine HTL scenario. The emissions reduction in the HEFA 238 
swine HTL scenario is primarily driven by the combined effect of co-optimized technologies and fuel 239 
reduction due to improved fuel economy because of progress in conventional vehicle technologies. The 240 



13 

benefit also can be partly linked to the increase in BD/RD consumption to make up for the inability of 241 
HEFA swine HTL RD to meet the demand in the case with carbon tax only (Table A4). 242 

With carbon tax and high renewable diesel case 243 

With carbon tax and high penetration of RD in the BAU and the sensitivity cases, emissions decreased by 244 
~24% and 5% in the AAEE and HEFA swine HTL scenarios, respectively, relative to the BAU with carbon tax 245 
and high RD in the pessimistic case. In the optimistic case, the HEFA swine HTL scenario offers GHG 246 
emissions benefit in 2050 representing 66 million metric tons or ~45% reduction driven by high 247 
penetration of co-optimized fuel/vehicle technologies and improved fuel economy in conventional vehicle 248 
technologies. GHG emissions also decrease by 15 million metric tons, or ~10%, in the AAEE scenario, 249 
driven by the reduction in the petroleum diesel consumption in 2050 (Table A4). 250 

251 
Figure A12. GHG emissions of BAU and sensitivity cases252 

Table A4. Fuel share by fuel type (energy basis) in 2050 253 

With carbon tax With carbon tax and high RD 
BAU 
with C 
tax (%) 

AAEE 
10% 
(%) 

AAEE 30% 
(%) 

HEFA 
swine 
HTL 10% 
(%) 

HEFA swine 
HTL 30% (%)  

BAU with C 
tax and high 
RD (%) 

AAEE 10% 
(%) 

AAEE 30% 
(%) 

HEFA swine 
HTL 10% 
(%)  

HEFA swine 
HTL 30% 
 (%) 

Diesel 
blendstock 

80.9 64.3 66.9 77.3 57.6 55.9 41.4 45.6 55.6 38.8 

Biodiesel 11.8 13.3 11.9 12.5 24.3 16.7 18.3 16.5 15.4 17.0 
RD 6.5 6.5 5.3 6.1 12.9 26.7 24.1 21.7 24.4 27.0 
Electricity 0.5 0.7 0.5 0.7 0.7 0.5 0.7 0.5 0.8 0.7 
Hydrogen 0.3 0.5 0.3 0.5 0.4 0.3 0.5 0.3 0.5 0.4 
AAEE 14.8 15 15 15.4 
Swine 
manure 
HTL 

2.9 4.0 3.3 16.1 

Tech Success and Sensitivity Cases 254 

The tech success represents a scenario with greater success and progress in conventional vehicle 255 
technologies relative to the co-optimized vehicles. Figure A13 illustrates the GHG emissions between the 256 
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tech success and selected sensitivity scenarios (scenarios with tech success and co-optimized 257 
technologies) with carbon tax and with carbon tax and high RD, respectively. In all cases, the AAEE 258 
scenarios (pessimistic case) show lower GHG emissions than the tech success because of a reduction in 259 
diesel consumption due to the increased production of MCCI fuel (Table A5). The HEFA swine HTL scenario 260 
(optimistic case) also shows lower emissions in all cases than the tech success: 24% and 33% lower 261 
emissions than the tech success in the case with carbon tax and with carbon tax and high RD, respectively. 262 

Table A5. Fuel share by fuel type (energy basis) in 2050 263 

With carbon tax With carbon tax and high RD 
Tech success 
(%) 

AAEE 10% 
(%) 

HEFA swine HTL 
30% 
 (%) 

Tech success (%) AAEE 10% (%) HEFA swine HTL 
30% (%) 

Diesel 
blendstock 

78.2 64.3 57.6 49.8 41.4 38.8 

Biodiesel 13.3 13.3 24.3 18.8 18.3 17.0 
RD 7.4 6.5 12.9 30.2 24.1 27.0 
Electricity 0.7 0.7 0.7 0.7 0.7 0.7 
Hydrogen 0.5 0.5 0.4 0.5 0.5 0.4 
AAEE 14.8 15 
Swine manure 
HTL 

4.0 16.1 

264 

265 

Figure A13. GHG emissions of tech success and sensitivity cases 266 

 267 

 268 

 269 

 270 

 271 

 272 
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