1 Supporting Information

- 2 A primary-secondary triboelectric nanogenerator
- 3 with charge excitation shift in a wind-driven

4 alternating operating mode

5 Zhibo Xu^{a, b}, Jianwei Ge^b, Qianwang Wang^b, Xin Yu^b, Yili Hu^c, Jianming Wen

6 c, *, Wei Han a, *, Tinghai Cheng b, *

- 7 a College of Physics, Jilin University, Changchun 130012, China
- 8 ^b Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- 9 The Institute of Precision Machinery and Smart Structure, Key Laboratory of Intelligent Operation and Maintenance
- 10 Technology & Equipment for Urban Rail Transit of Zhejiang Province, College of Engineering, Zhejiang Normal University,
- 11 Yingbin Street 688, Jinhua 321004, China
- 12 * Corresponding authors' e-mail addresses: wjming@zjnu.cn, whan@jlu.edu.cn, chengtinghai@binn.cas.cn

13 Note1: Calculation process of V_2 .

14

25

15 **Fig. S1.** Working process of doubler diode D_1 . (a) Working process with D_1 in positive bias. (b) 16 Working process with D_1 in negative bias.

P-TENG can be equivalent to the series of a capacitor C_P and an AC voltage source V_V in the circuit, as displayed in Fig. S1. Suppose V_P and V_C are the voltage of P-TENG and C_P , the positive maximum value and negative maximum value of V_V are V_{max1} and $-V_{max2}$ respectively, where $V_{max1}>0$ and $V_{max2}>0$. The voltage of V_2 is

21
$$V_2 = V_P = V_C + V_V$$
 (S1)

If $V_P \le 0$, D_1 is in positive bias and is equivalent to short circuit, as exhibited in Fig. S1a. In this situation, C_P is charging and current flows from V_V to C_P (red line in Fig. S1a). According to Kirchhoff's voltage law (KVL), it has

$$V_{\rm C} + V_{\rm V} = 0 \tag{S2}$$

26 So the voltage of V_2 is

27
$$V_2 = V_C + V_V = 0$$
 (S3)

28 When $V_{\rm V}$ =- $V_{\rm max2}$, $V_{\rm C}$ reaches its maximum value,

 $V_{C_{max}} = V_{max2}$ (S4)

30 If $V_P > 0$, D₁ is in negative bias and is equivalent to open circuit, as exhibited in 31 Fig. S1b. So

$$V_2 = V_{\text{max}2} + V_{\text{v}} \tag{S5}$$

33 When $V_{\rm V}=V_{\rm max1}$, V_2 reaches its maximum value,

34
$$V_{2_{max}} = V_{max1} + V_{max2}$$
 (S6)

35 Specially, if $V_{\text{max1}} = V_{\text{max2}} = V_{\text{max}}$, the maximum value of V_2 is

$$V_{2_{max}} = 2V_{max}$$
(S7)

37

38 Note2: Calculation process of transferred charges.

40 **Fig. S2.** Equivalent circuit diagram of S_1 -TENG and S_2 -TENG. (a) Equivalent circuit diagram of 41 S_2 -TENG. (b) Equivalent circuit diagram of S_1 -TENG.

42 The equivalent circuit diagram of S_2 -TENG is exhibited in Fig. S2a. It 43 equivalents to the series of a fixed capacitor C_{S2A} and a variable capacitor C_{S2B} ,

44
$$C_{\rm S2A} = \frac{\varepsilon_0 \varepsilon_{\rm r} A}{d_0}$$
(S8)

45
$$C_{\rm S2B}(x) = \frac{\varepsilon_0 A}{x}$$
(S9)

46 where ε_0 and ε_r denote vacuum permittivity and relative permittivity of dielectric 47 material, d_0 represents the thickness of dielectric material, A is the active area of S₂-48 TENG, x stands for the distance from L₂ to L₃, which satisfies $0 \le x \le X_{\text{max}}$, and X_{max} is 49 the maximum value of x. So the equivalents capacitor of S₂-TENG is

50
$$C_{\rm S2}(x) = \frac{1}{\frac{1}{C_{\rm S2A}} + \frac{1}{C_{\rm S2B}(x)}} = \frac{\varepsilon_0 \varepsilon_{\rm r} A}{\varepsilon_{\rm r} x + d_0}$$
(S10)

51 Let Q_2 be the total charges of S₂-TENG and buffer capacitor C_3 ,

52
$$Q_2 = Q_{S2}(x) + Q_{C3}(x)$$
 (S11)

53 where Q_{S2} and Q_{C3} are the charges in S₂-TENG and C_3 respectively. It can be further 54 expressed as

55
$$Q_2 = C_{S2}(x)V_{S2}(x) + C_3V_{C3}(x)$$
(S12)

56 where V_{S2} and V_{C3} represent the voltages of S₂-TENG and C₃. According to KVL, it 57 has

$$V_{\rm S2}(x) = V_{\rm C3}(x)$$
 (S13)

59 From equation (S10), (S12) and (S13), it has

60
$$V_{\rm S2}(x) = \frac{\varepsilon_{\rm r} x + d_0}{\varepsilon_{\rm r} C_3 x + d_0 C_3 + \varepsilon_0 \varepsilon_{\rm r} A} Q_2$$
(S14)

61 So

62
$$Q_{\rm S2}(x) = C_{\rm S2}(x)V_{\rm S2}(x) = \frac{\varepsilon_0\varepsilon_{\rm r}A}{\varepsilon_{\rm r}C_3x + d_0C_3 + \varepsilon_0\varepsilon_{\rm r}A}Q_2$$
(S15)

63 It shows that charges in S_2 -TENG varies with *x*, so the transferred charges of S_2 -64 TENG are from contacted state to separated state,

65
$$Q_{\text{TR2}} = Q_{\text{S2}}(0) - Q_{\text{S2}}(X_{\text{max}})$$

66
$$= \frac{\varepsilon_0 \varepsilon_r^2 A C_3 X_{\max}}{(d_0 C_3 + \varepsilon_0 \varepsilon_r A)(\varepsilon_r C_3 X_{\max} + d_0 C_3 + \varepsilon_0 \varepsilon_r A)} Q_2$$
(S16)

67 Let η_2 be the charge transfer efficiency of S₂-TENG,

68
$$\eta_2 = \frac{Q_{\text{TR}2}}{Q_2} \tag{S17}$$

69 η_2 reaches its maximum value when $X_{\text{max}} \rightarrow \infty$,

70
$$\eta_{2_{max}} = \frac{\varepsilon_0 \varepsilon_r A}{d_0 C_3 + \varepsilon_0 \varepsilon_r A} = \frac{1}{\frac{C_3}{C_{s2A}} + 1} < 1$$
 (S18)

71 It indicates η_2 can not reach 100%, and is related to C_3 . If $C_3=0$ (short circuit), charge 72 transfer efficiency is 100% which is the same as common TENG.

As to S₁-TENG, the active area is twice of S₂-TENG, and the distance is X_{max} -x, as depicted in Fig. S2b. The corresponding equations are listed below,

75
$$V_{\rm S1}(x) = \frac{\varepsilon_{\rm r} x - (\varepsilon_{\rm r} X_{\rm max} + d_0)}{\varepsilon_{\rm r} C_2 x - (\varepsilon_{\rm r} C_2 X_{\rm max} + d_0 C_2 + 2\varepsilon_0 \varepsilon_{\rm r} A)} Q_1$$
(S19)

76
$$Q_{\rm S1}(x) = \frac{-2\varepsilon_0\varepsilon_{\rm r}A}{\varepsilon_{\rm r}C_2x - (\varepsilon_{\rm r}C_2X_{\rm max} + d_0C_2 + 2\varepsilon_0\varepsilon_{\rm r}A)}Q_1$$
(S20)

77
$$Q_{\text{TR1}} = \frac{-2\varepsilon_0 \varepsilon_r^2 A C_2 X_{\text{max}}}{(d_0 C_2 + 2\varepsilon_0 \varepsilon_r A)(\varepsilon_r C_2 X_{\text{max}} + d_0 C_2 + 2\varepsilon_0 \varepsilon_r A)} Q_1$$
(S21)

78 where Q_1 is the total charges of S₁-TENG and buffer capacitor C_2 .

79 The partial derivative results of V_{S1} and V_{S2} to x are

80
$$\frac{\partial V_{\rm S1}}{\partial x} = \frac{-2\varepsilon_0\varepsilon_{\rm r}^2 A Q_1}{\left[\varepsilon_{\rm r} C_2 x - \left(\varepsilon_{\rm r} C_2 X_{\rm max} + d_0 C_2 + 2\varepsilon_0 \varepsilon_{\rm r} A\right)\right]^2} < 0$$
(S22)

81
$$\frac{\partial V_{s2}}{\partial x} = \frac{\varepsilon_0 \varepsilon_r^2 A Q_2}{\left[\varepsilon_r C_3 x + (d_0 C_3 + \varepsilon_0 \varepsilon_r A)\right]^2} > 0$$
(S23)

82 It shows V_{S1} and V_{S2} have the opposite variation trends as x varies, so they are a pair 83 of differential voltages. When one of them is increasing, the other one must be 84 decreasing, and vice versa. It verifies again that S₁-TENG and S₂-TENG can take 85 turns to accomplish the process of charge excitation and output.

89 Fig. S4. The basic durability test of the device.

name	CST-greenhouse MF-CE-TENG		O-TENG	PS-TENG
shape	arch	rectangle	rectangle	ring
size(mm)	200×157	198×138	50×50	outer diameter: 92 inner diameter: 12
area(m ²)	3.14E-02	2.73E-02	2.50E-03	6.53E-03
power	107.09 μW	5.17 mW	697 µW	4 mW
density(mW/m ²)	3.06	189.2	278.8	612.4
Ref.	[S1]	[S2]	[S3]	This work

Table S1. Power density comparison with other charge excitation works.

92 References

- 93 [S1] H. Wang, M. Zhang, Z. Yang, Z. Wang, X. Liu, Y. Lu, L. Ji, Z. L. Wang, J. Cheng, Nano
 94 Energy, 2021, 89, 106328.
- 95 [S2] G. Li, G. Liu, W. He, L. Long, B. Li, Z. Wang, Q. Tang, W. Liu, C. Hu, Nano Research,
 96 2021, 14, 11.
- 97 [S3] S. Pongampai, P. Pakawanit, T. Charoonsuk, N. Vittayakorn, Nano Energy, 2021, 90, 106629.