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Computational methods

We have employed the Vienna Ab Initio Package (VASP)1,2 to perform all the 

density functional theory (DFT) calculations within the generalized gradient 

approximation (GGA) using the PBE3 formulation. We have chosen the projected 

augmented wave (PAW) potentials4-6 to describe the ionic cores and take valence 

electrons into account using a plane wave basis set with a kinetic energy cutoff of 450 

eV. Partial occupancies of the Kohn−Sham orbitals were allowed using the Gaussian 

smearing method and a width of 0.05 eV. The electronic energy was considered self-

consistent when the energy change was smaller than 10−6 eV. A geometry optimization 

was considered convergent when the force change was smaller than 0.03 eV/Å. 

Grimme’s DFT-D3 methodology7 was used to describe the dispersion interactions. The 

vacuum spacing perpendicular to the plane of the structure is 15 Å. The Brillouin zone 

integral uses the surfaces structures of 2×2×1 monkhorst pack K point sampling. 

Finally, the adsorption energies (Eads) are calculated as Eads= Ead/sub -Ead -Esub, 

where Ead/sub, Ead and Esub are the optimized adsorbate / substrate system, the 

adsorbate in the structure and the clean substrate respectively. The free energy is 

calculated as follows:

  G E ZPE TS  

where G, E, ZPE and TS are the free energy, total energy from DFT calculations, zero 

point energy and entropic contributions, respectively.

 



Figure S1 HRTEM images of CE-CDs-III



Figure S2 Total spectrum of CE-CDs-X



Figure S3 the XRD of  Pd/XC-72 sample.



Figure S4 TEM images of Pd/CE-CDs-I (a), Pd/CE-CDs-II (b)



Figure S5 Total spectrum of CE-CDs-III and Pd/CE-CDs-III



Figure S6 the N 1s peak of  CE-CDs-III and Pd/CE-CDs-III
 



Figure S7 the Pd3d peak of  Pd/CE-CDs-III and Pd/XC-72



Figure S8 The effluent composition of FA dehydrogenation reaction analyzed by gas 

chromatography



Table S1: Catalytic activity of various catalysts for FA dehydrogenation (TOF values taken directly 
from related studies)

Catalyst Reagent Temp.

(K)

TOFinitial

(h-1)

Average

Size(nm)

Ref.

Pd-MnOX/SiO2-NH2 FA 298 140 4.6±1.2 [7]

Pd/C FA 303 48 1.8-3.5 [8]

PdAu/HPC-NH2 FA 298 3763 2 [9]

Pd/C FA 303 6.9 3-4 [10]

Pd/C-NaBH4 FA/SF=11/8 303 304 2.2 [11]

Pd-NH2/MIL-125 FA/SF=9.8/7.9 305 214 3.1 [12]

Pd/NHPC-NH2 FA 298 3798 2.5 [13]

Pd@SiO2 FA/SF=3:1 365 70 20-35 [14]

Pd-N-SiO2 FA/SF=9/1 358 115 - [15]

NiPd/NH2-N-rGO FA 298 954 10.2 [16]

Pd/MSC-30 FA/SF=1/1 298 750 2.3 [17]

Pd@CN FA 288 71 2.5 [18]

Methanol mediated Pd
NPs/ Vulcan XC-72R

FA/SF=1/1 303 1678 1.4 [19]

Pd@CN900K FA/SF=1/3 298 1963 1.1±0.2 [20]

Pd/CE-CDs-III FA 298 256 1.94±0.16 This work



Table S2 The content of Pd and N elements were obtained by XPS.
Sample Pd content N content

Pd/CDs-III 7.14% 13.57%

Pd/CDs-III after five tests 7.11% 11.41%
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