Supplementary information

Porous silicon-nanowire-based electrode for the photoelectrocatalytic production of hydrogen

Jingxian Wang^{1,2}, Caroline Keller^{1,3}, Marc Dietrich^{1,4}, Pascal Gentile⁴, Stéphanie Pouget⁵, Hanako Okuno⁵, Mohamed Boutghatin⁶, Yan Pennec⁶, Valérie Reita⁷, Duc N. Nguyen^{2,8}, Hannah Johnson⁹, Adina Morozan², Vincent Artero^{2,*}, Pascale Chenevier^{1,*}

¹ Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France

² Univ. Grenoble Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France

³ Univ. Grenoble Alpes, CEA, LITEN, DEHT, 38000 Grenoble, France

⁴ Univ. Grenoble Alpes, CEA, Grenoble-INP, IRIG, PheLIQS, 38000 Grenoble, France

⁵ Univ. Grenoble Alpes, CEA, IRIG, MEM, 38000 Grenoble, France

⁶ Univ. Lille CNRS UMR 8520 – IEMN – Institut d'Electronique de Microélectronique et de Nanotechnologie Lille F-59000, France

⁷ Univ. Grenoble Alpes, CNRS, Institut Néel, 38000 Grenoble, France

⁸ University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam

⁹ Toyota Motors Europe, Brussels, Belgium

Figure S1. Calculation of the interaction of light with SiNWs. (a) 2D schematic representation of the one-dimensional periodic array of SiNWs of period p embedded in dichloromethane solution. (b) Unit cell used for the Finite Element Method (FEM) calculation, applying periodic boundary (PBC) along x and perfect matching layers (PML) along y. (c) Calculated R (black), T (blue), and A (red) for TE polarization with the geometrical parameters d = 13 nm and p = 60 nm. (d) Map of the electric field modulus E, at the energy 3.4 eV and 4.1 eV.

Figure S2. SEM images of PCS-SiNW with 13 nm SiNWs at different areal densities of (a) 0, (b) 25, (c) 68, (d-e) 110 μ g/cm² and (f) 1.1 and (g-h) 1.4 mg/cm².

Figure S3. Detection of benzene in SiNW growth by-products by Gas chromatography (GC) and mass spectroscopy (MS): (a) GC spectrum of a solution of SiNW growth sub-products, to which a reference amount of benzophenone was added for quantification of benzene following a standard. (b), (c) and (d): MS spectra of the peaks A, B and C labeled in (a) respectively.

Figure S4. SEM images of (a) 48nm-SiNWs, 48 nm-SiNWs-MoS_x with (b) $\Delta Q = 1 \text{ mC/cm}^2$, (c) $\Delta Q = 6 \text{ mC/cm}^2$ and (d) $\Delta Q = 50 \text{ mC/cm}^2$.

Figure S5: TEM images of (a) 48 nm-SiNWs and (b) 13 nm-SiNWs in high resolution; (c) SiNW-MoS_x at low magnification and (d) in high resolution.

Figure S6: (a) PEC of PCS-SiNW-MoS_x photocathodes with a SiNW diameter of 48 nm when MoS_x is deposited just after SiNW growth, or when delaying MoS_x deposition for 13 and 30 days; (b) PEC of PCS-SiNW_{CVD}-MoS_x for SiNWs grown by CVD under chopped illumination.

Figure S7: PEC performance for PCS-SiNW-MoS_x photocathodes with 13nm- (black) and 48nm-SiNWs (magenta).

Figure S8: Photocurrent density of PCS-SiNW-MoS_x (with different nanowire diameters) at -0.15V vs. RHE as a function of SiNWs areal density.

Figure S9: Photoelectrocatalysis performance of PCS-SiNW-MoS_x with 48 nm-SiNWs (a-MoS_x deposition: $\Delta Q = 6 \text{ mC/cm}^2$) in 0.5 M H₂SO₄ electrolyte, second sample similar to the one used for Figure 6. (a) *J-V* curve of PCS-SiNW-MoS_x electrodes under chopped illumination. (b) Chronoamperometry at -0.15 V vs. RHE under illumination in a tightly closed system.