Electronic Supplementary Information

 $Ni_3V_2O_8@g-CN$ nanocomposite-based p-n heterojunction: Mechanistic insights on photocatalytic activation of inert C(sp³)-H bond

Anjali Verma^a, Arpna Jaryal^a, Deepak Kumar Chauhan^a, Venugopala Rao Battula^a, Madhurima Sarkar^b,

Abhijit Patra^b, Kamalakannan Kailasam*^a

^aAdvanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge city, Sector-81, 140306 Manauli, SAS Nagar, Mohali, Punjab, India

^bDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India

Corresponding Author *e-mail: <u>kamal@inst.ac.in</u>, <u>kkamal17@gmail.com</u>

1. Characterization

Figure S1 a) XRD pattern, b) FTIR spectra, and c) Tauc plot of NVO.

Figure S2 XPS Survey scan of NVO.

Figure S3 a) FESEM image of g-CN, b) & c) FESEM images of NVO.

Figure S4 Elemental mapping and EDX of NVO.

Figure S5 a) TEM and b) & c) HRTEM images of NVO.

Figure S6 Mott-Schottky plot of a) NVO, b) g-CN and c) NVO-1@g-CN, d) Band structure of NVO and g-CN and e) Nyquist plot of NVO, g-CN and NVO-1@g-CN.

Figure S7 Transient Photocurrent response NVO, g-CN and NVO-1@g-CN.

2. Comparison table for cyclohexane oxidation

S.No.	Catalyst	Reaction	Light	Yield (µmol.g ⁻¹ .h ⁻¹)		Cyclohexanone	Ref
		conditions	source	Cyclohexanone	Cyclohexanol	selectivity (%)	
1	NVO- 1@g-CN	5 mg catalyst, 5 ml cyclohexane	Solar simulator	66.6	4.6	93.4	Present work
2	BiVO ₄	50 mg catalyst, 5 mmol of cyclohexane, 5 ml ACN, 0.1 ml HCl	W-Br lamp	15.5 % conversion of cyclohexane		71	1
3	Cu/g-CN	5 mg catalyst, 10 mmol of cyclohexane, 5 ml ACN, 20 mmol H ₂ O ₂ .	Xe Lamp, Full arc	37 % conversion of cyclohexane		94	2
4	Au/g-CN	500 mg catalyst, 10 ml cyclohexane, 200 ml H ₂ O, 60°C	Xe Lamp, Full arc	10 % conversion of cyclohexane		100	3
5	Sulphated vanadium doped TS1	50 mg catalyst,5 mmol cyclohexane, 5 ml ACN +0.1 ml HCL	W-Br Lamp (UV filter)	3.4 % conversion of cyclohexane		100	4

Table S1 Photocatalytic oxidation of cyclohexane catalyzed by various catalysts.

Table S2 Photocatalytic oxidation of cyclohexane catalysed under different reaction conditions by NVO-1@g-CN.

S.No.	Reaction conditions	Yield (µm	ol.g ⁻¹ .h ⁻¹)	Selectivity (%)	
		Cyclohexanone	Cyclohexanol	Cyclohexanone	Cyclohexanol
1	5 mg catalyst, 5 ml ACN, 5 mmol cyclohexane, 0.1 ml HCL, O ₂	134	834	14	86
2	5 mg catalyst, 5 ml ACN, 10 mmol cyclohexane, 20 mmol H ₂ O ₂ , 60 °C	167	2500	6.3	93.7

3	5 mg catalyst, 4 ml H ₂ O, 2 ml cyclohexane, 60 °C	8	103	6.9	93.1
4	5 mg catalyst, 5 ml cyclohexane, 60 °C, O ₂	167	367	31.3	68.7

3. Experimental Analysis

Figure S8 Photocatalyst optimization for photocatalytic oxidation of cyclohexane to cyclohexanene for NVO-1@g-CN. Reaction conditions: cyclohexane - 5 mL; Oxygen atmosphere; Reaction time – 6h; Oriel Solar Simulator, & 100 mW cm⁻². Selectivity of cyclohexanone (%) = (cyclohexanone + cyclohexanone)) * 100.

Figure S9 GC-MS graph for cyclohexane photo-oxidation by NVO-1@g-CN for 6h, 12h, 24h and 48h.

Figure S10 Cyclic voltammetry plot of cyclohexane, cyclohexanol and cyclohexanone.

Figure S11 a) and b) FESEM images; c) to h) Elemental mapping and i) EDX of NVO-1@g-CN after 4 cycles.

Figure S12 a) C1s spectrum b) N1s spectrum and c) O1s spectrum of NVO-1@g-CN nanocomposite before and after 4 cycles.

Figure S14 EPR spectra of a) $^{1}O_{2}$ using NTPD and b) O_{2}^{-} using DMPO for NVO-1@g-CN and c) Cyclohexyl radical using PBN for NVO and NVO-1@g-CN.

Figure S13: N₂ adsorption and desorption isotherm of NVO-1@g-CN a) before 4 cycles and b) after 4 cycles.

Figure S15 Photoluminescence (PL) spectra of NVO-1@g-CN before and after addition of cyclohexane.

References:

- 1 L. Xiang, J. Fan, W. Zhong, L. Mao, K. You and D. Yin, Appl. Catal. A Gen., 2019, 575, 120–131.
- A. Shahzeydi, M. Ghiaci, H. Farrokhpour, A. Shahvar, M. Sun and M. Saraji, *Chem. Eng. J.*, 2019, **370**, 1310–1321.
- 3 J. Liu, Y. Yang, N. Liu, Y. Liu, H. Huang and Z. Kang, *Green Chem.*, 2014, 16, 4559–4565.
- 4 W. Zhong, T. Qiao, J. Dai, L. Mao, Q. Xu, G. Zou, X. Liu, D. Yin and F. Zhao, *J. Catal.*, 2015, **330**, 208–221.