**Supplementary Information** 

## Carbon layer protected self-supporting CoSe<sub>2</sub> nanowire arrays for super durable hydrogen evolution reaction catalyst

Xinyue Wang,<sup>a</sup> Yibin Wang,<sup>a</sup> Xinzhi Ma\*<sup>a</sup>, Lingling Xu,<sup>a</sup> Sirui Liu,<sup>a</sup> Wei Wang,<sup>a</sup> Huiqing Lu\*<sup>a</sup>,

and Lili Wu<sup>a</sup>

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of

Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, People's

Republic of China. E-mail: wll790107@hotmail.com; maxz@hrbnu.edu.cn



Fig. S1 The EDX energy spectrum of C@CoSe<sub>2</sub>/CC.



Fig. S2 The XPS Spectra of C@CoSe<sub>2</sub>/CC and CoSe<sub>2</sub>/CC.



Figs. S3 (a) Polarization curves of Pt/C measured at a scan rate of 5 mV/s. (b) Tafel slope for Pt/C.



Figs. S4 CV curves obtained from different scan rates. (a) for C@CoSe<sub>2</sub>/CC, (b)  $CoSe_2/CC$ .



Fig. S6 The water contact angle images of CoSe<sub>2</sub>/CC and C@CoSe<sub>2</sub>/CC.



Fig. S8 CV curves measured in phosphate buffer at pH=7.





Fig. S10 Polarization curves before and after 6,000 cycles of CoSe<sub>2</sub>/CC.



Fig. S11 Long-term stability measurement of  $CoSe_2/CC$  measured at a current density of 30 mA cm<sup>-2</sup>.



Fig. S12 Long-term stability measurement of C@CoSe<sub>2</sub>/CC measured at a current density of 30 mA cm<sup>-2</sup>.

| Catalysts                                | $\eta_{10/\text{ mV}}$ | Stability test<br>conditions<br>(mA cm <sup>-2</sup> ) | Long cycle<br>stability test<br>time (h) | Refs.    |
|------------------------------------------|------------------------|--------------------------------------------------------|------------------------------------------|----------|
| C@CoSe2/CC                               | 179                    | 30                                                     | 24                                       | Our work |
| CoSe <sub>2</sub>                        | 272                    | 20                                                     | 8                                        | s1       |
| CoSe <sub>2</sub> @HC                    | 189.2                  | 10                                                     | 12                                       | s2       |
| CoSe <sub>2</sub> /GD                    | /                      | 10                                                     | 24                                       | s3       |
| CoSe                                     | 186.1                  | 10                                                     | 10                                       | 18       |
| CoSe <sub>2</sub> /CFP                   | 219                    | /                                                      | /                                        | s4       |
| CoSe <sub>2</sub> /CoP                   | 140                    | 10                                                     | 10                                       | s4       |
| CoSe <sub>2</sub> /CNTs                  | 186                    | 35                                                     | 22                                       | s5       |
| CoSe <sub>2</sub> /CNTAs                 | 204                    | 10                                                     | 8                                        | s6       |
| CoSe <sub>2</sub> NP/GC                  | 200                    | /                                                      | /                                        | s7       |
| CoSe <sub>2</sub> @G                     | 210                    | 22                                                     | 20                                       | s8       |
| CoSe <sub>2</sub> @DC                    | 132                    | 10                                                     | 20                                       | 29       |
| CoSe <sub>2</sub> /DC                    | 206                    | /                                                      | /                                        | 29       |
| MoSe <sub>2</sub> /CoSe <sub>2</sub>     | 200                    | /                                                      | /                                        | s9       |
| Co <sub>3</sub> O <sub>4</sub> NPs       | 300                    | /                                                      | /                                        | s10      |
| CoSe <sub>2</sub> @CP                    | 234                    | /                                                      | /                                        | s11      |
| N-CoSe <sub>2</sub> @CP                  | 106~200                | 10                                                     | 24                                       | s11      |
| c-CoSe <sub>2</sub> @Co(OH) <sub>2</sub> | 156                    | 20                                                     | 20                                       | s12      |
| CoSe <sub>2</sub> /MWCNT                 | 241                    | /                                                      | /                                        | s13      |
| RGO/CoSe <sub>2</sub>                    | 172                    | 12                                                     | 2.8                                      | s14      |

Table S1. The stability of C@CoSe $_2$ /CC compared with other HER catalysts.

## References

- s1 C.-L. McCarthy, C.-A. Downes, E.-C. Schueller, K. Abuyen, and R.-L. Brutchey, *ACS Energy Lett.*, 2016, **1**, 607-611.
- s2 S.-H. Yang, G.-D. Park, J.-K. Kim, Y.-C. Kang, Chem. Eng. J., 2021, 424, 162328.
- s3 H. Zhang, L. Lei and X. Zhang, RSC Adv., 2014, 4, 54344-54348.
- s4 R. Bose, T.-H. Kim, B. Koh, C.-Y. Jung, and S.-C. Yi, *ChemistrySelect*, 2017, 2, 10661-10667.
- s5 H. Yue, B. Yu, F. Qi, J. Zhou , X. Wang, B. Zheng, W. Zhang, Y. Li, Y. Chen, *Electrochim. Acta*, 2017, **253**, 200-207.
- s6 M. Zhang, A. Hu, Z. Liu, Y. Xu, B. Fan, Q. Tang, S. Zhang, W. Deng, X. Chen, *Electrochim. Acta*, 2018, **285**, 254-261.
- s7 D. Kong, H. Wang, Z. Lu, and Y. Cui, J. Am. Chem. Soc., 2014, 136, 4897-4900.
- s8 C. Dai, X. Tian, Y. Nie, C. Tian, C. Yang, Z. Zhou, Y. Li, X. Gao, *Chem. Eng. J.*, 2017, **321**, 105-112.
- s9 C. Mu, H. Qi, Y. Song, Z. Liu, L. Ji, J. Deng, Y. Liaoand F. Scarpa, *RSC Adv.*, 2016, 6, 23-30.
- s10 R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, D. Yuan, *J. Power Sources*, 2017, **341**, 250-256.
- s11 G. Wei, Z. Xu, X. Zhao, S. Wang, F. Kong, C. An, J. Alloys Compd., 2022, 893, 162328.
- s12 J. Bai, Y. Wang, Y. Wang, T. Zhang, G. Dong, D. Geng, *Int. J. Energy Res.*, 2022, **46**, 12476-12484.
- s13 R. Samal, P. Mane, M. Bhat, B. Chakraborty, D.-J. Late, and C.-S. Rout, *ACS Appl. Energy Mater.*, 2021, **4**, 11386-11399.
- s14 X. Fang, Z. Wang, S. Kang, L. Zhao, Z. Jiang, M. Dong, *Int. J. Hydrog. Energy*, 2020, **45**, 1738-1747.