Parameter/ Sample	Unit	2MgA1	20K ₂ O/2MgAl			
SiO ₂	wt.%	< 0.1	0.3			
Al_2O_3	wt.%	38.3	28.1			
MgO	wt.%	59.7	43.9			
K ₂ O	wt.%	0.1	24.7			
Other impurities ^a	wt.%	1.9	3.0			
Mg/Al	mol/mol	2.0	2.0			

Table S1. Elemental Composition

^a other impurities including Cl, SO₃, P₂O₅, CaO, Na₂O, MnO, CuO, ZnO, Fe₂O₃, Ga₂O₃, NiO

Table S2. Physicochemical properties of Hydrotalcite (HTC) catalysts

		Base and Acid site loading (mmol g ⁻¹)									
	Catalyst	T _{max}	Basic site loading ^a	T _{max}	Acid site loading ^b	${{S_{BET}}^{c}}^{c}$ $(m^{2}$ $g^{-1})$	${S_{ m MIC}}^{ m d}$ $(m^2$ $g^{-1})$	${\mathop{S_{\rm EXT}}\limits^{{\rm e}}}^{{\rm e}}_{{ m (m}^2}$	V_p^{f} (cm ³ g ⁻¹)	V_{mic}^{d} (cm ³ g ⁻¹)	V _{mes} ^g (cm ³ g ⁻¹)
		(°C)	(mmol g ⁻¹)	(°C)	(mmol g ⁻¹)						
2	20K ₂ O/2MgAl	100, 404, 642	0.498	300	1.200	34	0	4	0.45	0	0.45
	2MgAl	140-230, 648	0.566	400, 536	3.100	54	0	35	0.57	0	0.57

^a from CO₂-TPD; ^b from propylamine-TGA-MS; ^c S_{BET} total surface area determined using BET equation with $P/P_0 < 0.05$; ^d S_{MIC} micropore surface area and V_{MIC} micropore volume determined from t-plot analysis ^e S_{EXT} external surface area was calculated from the difference between S_{BET}-S_{MIC}, ^f V_p total pore volume obtained from isotherm at P/P₀=0.99 (Error = ±10%) and ^g V_{MES} mesopore volume obtained from the difference between V_p-V_{MIC}.

Fig S1. Wide-angle XRD of parent and modified 2MgAl Hydrotalcite

Fig S2. Adsorption–desorption isotherms of N_2 molecules at 77 K and pore size distribution (inset) of a) SBA-15, b) 12MgAl-SBA-15, c) $8K_2O/12MgAl-SBA-15$, d) $20K_2O/12MgAl-SBA-15$, (e) 2MgAl and (f) $2K_2O/2MgAl$

Fig S3. (a) CO₂-TPD and (b) TGA-MS-propylamine of parent and modified 2MgAl

Fig. S4 (a) Comparison of furfural conversion for 2MgAl and 20K₂O/2MgAl and (b and c) product selectivity as a function of furfural conversion achieved over 24 h for 2MgAl and 20K₂O/2MgAl catalysts

Fig. S5 TGA-DTG measurement of regenerated 20K_2O/12MgAl-SBA-15 by thermal treatment under an $\rm N_2$