Supporting Information

Bifunctional Electrocatalyst for Alkaline Seawater Splitting using Ruthenium

Doped Nickel Molybdenum Phosphide Nanosheets

Hari Krishna Sadhanala#*, Akanksha Gupta#, and Aharon Gedanken*

Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan 52900, Israel

*Corresponding Authors E-mail: gedanken@biu.ac.il (A.G)

kittu1061987@gmail.com (H.K.S)

Fig. S1. HR-SEM image of NiMoP₂.

Fig. S2. (a and b) HR-SEM images of $Ru_{11}NiMoP_2$ and $Ru_{33}NiMoP_2$.

Fig. S3. For HER ECSA: (a and b) CV curves for NiMoP₂/NF and Ru₂₂NiMoP₂/NF at different

Fig. S4. For OER ECSA: (a and b) CV curves for NiMoP₂/NF and Ru₂₂NiMoP₂/NF at different scan rates in 1M KOH.

Fig. S5. (a) HR-SEM image, (b-d) Ru 3p, Ni 2p and Mo 3d XPS spectra of $Ru_{22}NiMoP_2/NF$ after chronopotentiometry study in 1M KOH.

Fig. S6. (a and b) HER LSV and OER CV curves for $Ru_{22}NiMoP_2/NF$ & Pt/C/NF and RuO_2/NF in alkaline sea water.

Figure S7. Chronopotentiometry study in alkaline sea water.

 Table S1. Comparison of reported electrocatalysts with Ru22NiMoP2/NF for alkaline sea water splitting.

S.	Catalyst	Potential	OER(TOF)	HER(TOF)	Ref
No					
1.	NiCoP/NF	1.58V/ 10 mAcm ⁻²	$3.88 \text{ s}^{-1}/300 \text{ mV}$	8.93 s ⁻¹ /-100	1
				mV	
2.	CoFe/NF	1.64V/ 10 mAcm ⁻²	$0.017 \text{ s}^{-1}/350 \text{ mV}$		2
3.	CoFe@NiFe/NF	$1.59 \text{ V}/10 \text{ mA cm}^{-2}$	11.9 s ⁻¹ /300 mV	$15.7 \text{ s}^{-1}/220$	3
				mV	
4.	CoMoN _x -500	$1.55 \text{ V}/10 \text{ mA cm}^{-2}$	1.57 s^{-1}	$4.29 \text{ s}^{-1}/-200$	4
	NSAs/NF			mV	
5.	Sn-Ni ₃ S ₂ /NF	$1.46 \text{ V}/10 \text{ mA cm}^{-2}$		8.7 s ⁻¹ /-	5
				155mV	
6.	Fe-CoP/NF	$1.49 \text{ V}/10 \text{ mA cm}^{-2}$	$3.09 \text{ min}^{-1}/300 \text{ mV}$	4.14	6
				$\min^{-1}/200$	
				mV	
7.	G@MoNi ₄ -	$1.44 \text{ V}/10 \text{ mA cm}^{-2}$	$0.97 \text{ s}^{-1}/200 \text{ mV}$	$11.9 \text{ s}^{-1}/200$	7
	NiMoO ₄ /NF			mV	
8.	NiFeOH/CoS _x /NF	$1.56 \text{ V}/10 \text{ mA cm}^{-2}$	0.52 s⁻¹/ 200 mV	0.71 s⁻¹/ 200	8
				mV	
9.	$V-N1(OH)_2/NF$	$1.58/100 \text{ mA cm}^{-2}$	$14.2 \text{ s}^{-1}/300 \text{ mV}$	$17.2 \text{ s}^{-1}/300$	9
				mV	
10.	NiSe@CoFe	$1.69 / 100 \text{ mA cm}^{-2}$	0.078 s ⁻¹ /250 mV		10
	LDH/NF	-			
12	Ru-NiMoP ₂	1.53@10mA cm ⁻²	$1.6 \text{ s}^{-1}/100 \text{ mV}$	$5 \text{ s}^{-1}/100 \text{ mV}$	This
	(KOH +				work
	Seawater)				

References

- 1. H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl and H.N. Alshareef. *Nano Lett.*, 2018, **16**, 7718-7725.
- 2. P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang, S. Pawar, and J.H. Kim, *Small*, 2018, 14, 1702568.
- R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan. *Appl. Catal.* B, 2019, 253, 131-139.
- 4. Y. Lu, Z. Li, Y. Xu, L. Tang, S. Xu, D. Li, J. Zhu and D. Jiang. *Chem. Eng. J.*, 2021, **411**, 128433.
- 5. J. Jian, L. Yuan, H. Qi, X. Sun, L. Zhang, H. Li, H. Yuan and S. Feng, *ACS Appl. Mater. Interfaces*, 2018, **10**, 40568-40576.
- L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang and T.B. Lu. Adv. Sci., 2018, 5, 1800949.
- 7. L. An, X. Zang, L. Ma, J. Guo, Q. Liu and X. Zhang, Appl. Surf. Sci., 2020, 504, 144390.
- R. Bose, V.R. Jothi, K. Karuppasamy, A. Alfantazi and S.C. Yi, *J. Mater. Chem. A*, 2020, 8, 13795-13805.
- 9. P. Zhao, L. Ma and J. Guo, J Phys Chem Solids, 2022, 164, 110634.
- 10. F. Nie, Z. Li, X. Dai, X. Yin, Y. Gan, Z. Yang, B. Wu, Z. Ren, Y. Cao, and W. Song, *Chem. Eng. J.*, 2022, **431**, 134080.