Electronic Supplementary Information (ESI) for Inorganic Chemistry Frontiers

Hydroxy Reduced Silver Nanoparticles on Ultrathin Boron Imidazolate Framework Nanosheet for Electrocatalytic CO₂ Reduction

Ping Shao^{a,b}, Luocai Yi^b, Jun-Qiang Chen^b, Changsheng Cao^b, Hai-Xia Zhang^{b*} and

Jian Zhang^{b*}

^aCollege of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

Email: <u>zhanghaixia@fjirsm.ac.cn</u>; <u>zhj@fjirsm.ac.cn</u>.

Contents

Figure S1	2
Figure S2	3
Figure S3	3
Figure S4	3
Figure S5	4
Figure S6	4
Figure S7	4
Figure S8	5
Figure S9	5
Figure S10	5
Figure S11	6
Figure S12	6
Figure S13	6
Figure S14	7
Figure S15	7

Figure S1. PXRD patterns of BIF-73, BIF-73NSs.

The diffraction peak of layered BIF-73NSs is consistent with that of BIF-73, only the peak intensity changed slightly, and the position of the diffraction peak at 10-15 degrees slightly changed. We hypothesize that these changes are due to the fact that the three $BH(im)_{3}^{-}$ (im = imidazolate) ligands of layered BIF-73NSs unit cell cannot be kept in the same plane or have been twisted after the bulk crystal is exfoliated into layered.

Figure S2. The 2,5-dihydroxyterephthalate ligands decorated 2D monolayer structure of BIF-73 crystal.

Figure S3. PXRD patterns of Ag@BIF-73NSs electrocatalysts.

Figure S4. PXRD patterns of Graphene.

Figure S5. High-resolution Cd 3d XPS spectrum of Ag@BIF-73NSs, BIF-73NSs electrocatalysts.

Figure S6. SEM images of BIF-73NSs electrocatalysts.

Figure S7. TEM images of Ag@BIF-73NSs electrocatalysts.

Figure S8. TEM images of Ag@Graphene electrocatalysts.

Figure S9. Infrared spectra for BIF-73, BIF-73NSs, and Ag@BIF-73NSs electrocatalysts.

FT-IR experiments display that the adsorption peaks located at $1100 \sim 1200 \text{ cm}^{-1}$ weaken when introducing Ag⁺ into framework, and the adsorption peaks can be ascribed to the character adsorption of C-OH groups, suggesting that the Ag⁺ had interaction with functional -OH groups in the BIF-73.

Figure S10. 1H NMR of the liquid products for Ag@BIF-73NSs after 1 h electrolysis.

Figure S11. 1H NMR of the liquid products for BIF-73NSs after 1 h electrolysis.

Figure S12. 1H NMR of the liquid products for Ag@Graphene after 1 h electrolysis.

Figure S13. Nyquist plots of electrocatalysts over the frequency ranging from 100 kHz to 0.1 Hz at -0.6 V vs.RHE.

Figure S14. The morphology characterization of Ag@BIF-73NSs after electrocatalysis. a) STEM and b) Ag; c) Cd; d) C; e) N; f) O element mapping images.

To further investigate the stability of Ag@BIF-73NSs after CO₂RR, STEM and energy dispersive X-ray (EDX) elemental mapping tests have been conducted. EDX elemental mapping images show that Ag is uniformly distributed in Ag@BIF-73NSs after CO₂RR, suggesting the good stability of the Ag@BIF-73NSs after CO₂RR.

Figure S15. The total current density and FE of CO over 4 h electrolysis on Ag@BIF-73NSs catalysts at -1.0 V vs. RHE.

The electrochemistry durability test results reveal that the current density of Ag@BIF-73NSs indicates no significant decay for 4 h at -1.0 V versus RHE; moreover, the FE of CO keeps at $\approx 60\%$, implying the Ag@BIF-73NSs can maintain both the activity and selectivity during the CO₂ reduction process.