## **Supporting Information for:**

# Ni/Co in and on CeO<sub>2</sub>: A comparative study on dry reforming reaction

Pradeep Kumar Yadav<sup>a</sup>, Kalyani Patrikar<sup>a</sup>, Dr. Anirban Mondal<sup>a</sup> and Dr. Sudhanshu Sharma<sup>a</sup>\*

Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar -382355, India \*Corresponding authors: E-mail: ssharma@iitgn.ac.in

Number of Pages:31

Number of Figures: 15

Number of Tables: 06

#### **Contents:**

#### **1-Supporting Results:**

SI.1: Zoomed XRD patterns for (a) Ni& Co substituted CeO<sub>2</sub> (b) Ni& Co supported CeO<sub>2</sub>

SI.2: Rietveld refined XRD patterns for (a)  $CeO_2$  (b) Ni substituted  $CeO_2$  (c) Co substituted  $CeO_2$ 

**SI.3:** HR-TEM images of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ . No indication of separated metal in substituted catalysts is apparent while the metallic Ni and Co are present in the supported catalysts

**SI.4:** High-angle annular dark-field (HAADF)-Scanning transmission electron microscopy and energy-dispersive X-ray elemental mapping of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

**SI.5:** High resolution XPS spectra of Ce 3d in (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

**SI.6:** High resolution XPS spectra of O 1s in (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

SI.7: Thermodynamic equilibrium conversion with Carbon formation calculations

**SI.8:** Long term  $H_2$  and CO Yield curve for the dry reforming of methane over Ni supported over CeO<sub>2</sub>, Co supported over CeO<sub>2</sub>, Co-substituted CeO<sub>2</sub>.

SI.9: Long term CH<sub>4</sub> and CO<sub>2</sub> conversion curve for the dry reforming of Co-substituted CeO<sub>2</sub>

SI.10: TEM Analysis of spent catalysts

SI.11:TGA profiles of Ni/Co substituted and supported catalysts after CH<sub>4</sub> decomposition test

**SI.12:** Schematic sketch for mechanism on the basis of transient studies of methane decomposition and  $CO_2$  reaction with deposited carbon after  $CH_4$  decomposition on the Ni and Co supported the  $CeO_2$ .

**SI.13:** Schematic showing methane on Ni- and Co- substituted catalyst surface used to calculate adsorption energy at different sites

SI.14: Percentage  $CH_4$  and  $CO_2$  conversions for dry reforming of methane reaction at different flow rates for Co substituted  $CeO_2$ 

SI.15: Apparent activation energy estimation for Co substituted CeO<sub>2</sub>

Table S1. Rietveld refined structural parameters for CeO<sub>2</sub> substituted compounds

**Table S2** -High-resolution Ce 3d XPS results. The listed-out figures are the binding energies (BE) and the area of each peak. The ratio of  $Ce^{3+/}Ce^{4+}+Ce^{+3}$  was calculated to illustrate the content of oxygen vacancy around  $Ce^{3+}$  sites on the catalyst surface

**Table S.3** O1s XPS peak deconvolution results of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ **Table S.4** Summary of the Catalytic Activity in dry reforming of methane on the different Catalysts.

Table S.5 Selected Co based DRM catalysts reported in the literature and their activity

**Table S.6** Amount of Carbon deposited by various catalyst in DRM with different Feed vol.% concentration  $(CH_4/CO_2=1)$ 

### 1.Supporting Results:

SI.1:Zoomed XRD patterns for (a) Ni& Co substituted CeO<sub>2</sub> (b) Ni& Co supported CeO<sub>2</sub>



**Figure S1** – Zoomed XRD patterns for (a) Ni& Co substituted  $CeO_2$  (b) Ni& Co supported  $CeO_2$ 

## SI.2: Rietveld refined XRD patterns for (a) $CeO_2$ (b) Ni substituted $CeO_2$ (c) Co substituted $CeO_2$

Rietveld refinements (Figure S2) on the CeO<sub>2</sub> and transition metal (Ni, Co) substituted CeO<sub>2</sub> using the JANA 2006 software. The refinements were performed to approve the substitution of Ni and Co in CeO<sub>2</sub>. Rietveld refinements have shown a considerable decrease in the lattice parameter and cell volume if we consider Ni and Co substitution on Ce site. The value of Goodness of fit (GOF) around unity specifies the admirable goodness of  $Y_{observed}$  and  $Y_{calculated}$  value<sup>1</sup> and authorizes that refined parameters are resolved even more absolutely. R(obs), R(all), and wR(all) are the reliability factor which also gave the information regarding the profile fitting.



| Compounds              | CeO <sub>2</sub> | Ni substituted   | Co substituted   |
|------------------------|------------------|------------------|------------------|
|                        |                  | CeO <sub>2</sub> | CeO <sub>2</sub> |
| Crystal System         | FCC Cubic        | FCC Cubic        | FCC Cubic        |
| Space group            | Fm-3m (No:       | Fm-3m (No: 225)  | Fm-3m (No: 225)  |
|                        | 225)             |                  |                  |
| Lattice Parameters (Å) |                  |                  |                  |
| a=b=c                  | 5.4182 (7)       | 5.4154 (3)       | 5.4103 (6)       |
| Cell volume $(Å^3)$    | 159.07 (3)       | 158.57 (13)      | 158.3 (3)        |
|                        |                  |                  |                  |
| R Factors              |                  |                  |                  |
| Robs                   | 4.56             | 2.76             | 3.16             |
| GOF                    | 1.26             | 1.16             | 1.32             |
| R all                  | 4.56             | 2.76             | 3.16             |
| wR <sub>all</sub>      | 4.72             | 3.38             | 3.76             |

*Table S1.* Rietveld refined structural parameters for CeO<sub>2</sub> substituted compounds

SI.3: HR-TEM images of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ . No indication of separated metal in substituted catalysts is apparent while the metallic Ni and Co are present in the supported catalysts

substituted  $CeO_2$  (d) Co substituted  $CeO_2$ . No indication of separated metal in substituted catalysts is apparent while the metallic Ni and Co are present in the supported catalysts.

### SI.4: High-angle annular dark-field (HAADF)-Scanning transmission electron microscopy and energy-dispersive X-ray elemental mapping of (a) Ni supported over $CeO_2$ (b) Co supported over $CeO_2$ (c) Ni substituted $CeO_2$ (d) Co substituted $CeO_2$

The morphology of deposited carbon on the spent catalyst after the reaction was carried out by the FEI Themis 60-300 with EDS detector and FEI CETA 4k x 4k camera for imaging the catalyst. Before performing the TEM analysis of catalysts were supported ultrasonically in methanol. A drop of dispersion was dropping cast over the carbon-coated copper grid and dried for two days.

Figure S4 shows Energy-dispersive X-ray spectroscopy (EDX) mapping of the (a) Ni supported over CeO<sub>2</sub> (b) Co supported over CeO<sub>2</sub> (c) Ni substituted CeO<sub>2</sub> (d) Co substituted CeO<sub>2</sub>. The High-angle annular dark-field -Scanning transmission electron microscopy (HAADF-STEM) and corresponding EDX revealed a homogeneous elemental distribution and presence of Ni and Co supported over CeO<sub>2</sub> in figure S4 (a, b). The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image (Figure S4c) of Ni substituted CeO<sub>2</sub> reveals that Ni aggregation is visible at some portion. The EDX of Ni distribution overall is low, but at some portion of concentration is high, possible reason for high concentration intensity may be lot of particles stacked on each other. But from the XRD analysis we did not observe the separate phase of Ni or NiO. On the basis of that we are expecting most of Ni particle is substituted in the  $CeO_2$ . In the case Co substituted species are highly disseminated and no aggregation of Co is visible over  $CeO_2$  structure as seen the Figure S4d.



**Figure S4:** High-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray elemental mapping of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

#### SI.5: High resolution XPS spectra of Ce 3d in (a) Ni supported over $CeO_2$ (b) Co supported over $CeO_2$ (c) Ni substituted $CeO_2$ (d) Co substituted $CeO_2$

The complex XPS Ce 3d spectrum (FigureS5), explained in more detail somewhere else, was analysed following a procedure described in the literature. The Ce 3d spectrum was deconvoluted in 10 Gaussian-type functions with binding energies constrained to known values<sup>2, 3</sup>. Following notation introduced by Burroughs et al., The signals of Ce<sup>3+</sup> are labelled as U', U<sup>0</sup>, V', and V<sup>0</sup>. In contrast, those of Ce<sup>4+</sup> is labelled as U, U", U"', V, V", and V"', where the superscript corresponds to different final states, and the V and U correspond to the  $3d_{5/2}$  and  $3d_{3/2}$  states, respectively<sup>4, 5</sup>. The intensity of each peak permits the calculation of the Ce<sup>3+</sup> fraction by using the equation-

Ce (III) = 
$$U^0 + U' + V^0 + V'$$
  
Ce (IV) =  $U + U'' + U''' + V + V'' + V'''$ 

Fraction of Ce (III) from Ce 
$$3d = \frac{Ce (III)}{Ce (IV) + Ce (III)}$$

The ratio between  $Ce^{3+}$  to  $Ce^{4+}$   $Ce^{3+}$  concentration gives useful information regarding the presence of surface defects, that play a crucial role in determining the catalytic activity of Ceria based systems.

The fraction of  $Ce^{+3}$  is given in table(S2) for mono-metal substituted and supported catalyst. High-resolution Ce 3d XPS results and spectra are given in the Figure S5 and table S2 which listed-out the binding energies (BE) and the area of each peak. The ratio of  $Ce^{3+}/Ce^{4+}+Ce^{+3}$  was calculated to illustrate the content of oxygen vacancy around  $Ce^{3+}$  sites on the catalyst surface<sup>6</sup>.



supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

**Table S2**-High-resolution Ce 3d XPS results. The listed-out figures are the binding energies (BE) and the area of each peak. The ratio of  $Ce^{3+}/Ce^{4+}+Ce^{+3}$  was calculated to illustrate the content of oxygen vacancy around  $Ce^{3+}$  sites on the catalyst surface

| Peaks          | Binding                  | Ni               | Со               | Ni-              | Со-              |
|----------------|--------------------------|------------------|------------------|------------------|------------------|
| assignment     | energy                   | supported        | supported        | substituted      | substituted      |
|                |                          | over             | over             | CeO <sub>2</sub> | CeO <sub>2</sub> |
|                | (ev)                     | CeO <sub>2</sub> | CeO <sub>2</sub> |                  |                  |
| V <sup>0</sup> | 880.7-881.2              | 2145.2           | 3060.9           | 3671.3           | 3602.6           |
| V              | 882.7-883.9              | 52795.6          | 221848.1         | 213387.8         | 65087.2          |
| V'             | 885.3-886.9              | 115195.6         | 78986.4          | 141609.8         | 146203.7         |
| V"             | 888.6-889.9              | 155738.1         | 71240.3          | 184317.3         | 173939.7         |
| V""            | 898.1-899                | 105698.3         | 4047.0           | 58504.6          | 3502.6           |
| U <sup>0</sup> | 899.1-899.9              | 71260.5          | 88156.4          | 101659.0         | 200628.8         |
| U              | 900.8-900.9              | 81176.9          | 87344.2          | 156351.3         | 122856.7         |
| U'             | 903.7-903.9              | 45166.5          | 108933.0         | 143628.8         | 80969.2          |
| U"             | 907.3-908                | 156190.6         | 86343.2          | 173856.6         | 151613.5         |
| U'''           | 916.7-917.3              | 127736.0         | 91573.4          | 166848.1         | 160017.6         |
|                | Ce <sup>+3</sup>         | 233767.8         | 279136.7         | 390568.9         | 431404.3         |
|                | Ce <sup>+4</sup>         | 679335.5         | 562396.2         | 953265.7         | 677017.3         |
|                | <b>Fraction Ce</b>       | 0.25             | 0.33             | 0.29             | 0.38             |
|                | (III) from               |                  |                  |                  |                  |
|                | Ce 3d =                  |                  |                  |                  |                  |
|                | <i>Ce</i> ( <i>III</i> ) |                  |                  |                  |                  |
|                | Ce (IV) + Ce             |                  |                  |                  |                  |
|                |                          |                  |                  |                  |                  |

# SI.6: High resolution XPS spectra of O 1s in (a) Ni supported over $CeO_2$ (b) Co supported over $CeO_2$ (c) Ni substituted $CeO_2$ (d) Co substituted $CeO_2$

The O 1s XPS show two different types of oxygen species for supported catalysts, but substituted catalysts show three different types of oxygen species. The detected main peak labelled as O' at 529.01-529.5eV was the lattice oxygen in metal oxide, and a shoulder labelled as O'' at 531.01-531.9.5eV was ascribed to the chemically adsorbed oxygen<sup>3, 7</sup>. The peak at 532.01-532.9eV (O''') can be ascribed water/carbonate species multiplicity of physiosorbed and chemisorbed water on or near the surface, respectively<sup>8</sup>. Upon incorporation of Ni or Co in the  $CeO_2$ , increase the instability of O species (lattice oxygen – O') occurs which generates the active oxygen species (O, O<sup>2-</sup>, and O<sup>-</sup>) in CeO<sub>2</sub>. As oxygen vacancy density could facilitate oxygen species adsorption(O")<sup>9</sup>. So another word if more will be oxygen vacancies, more will be chemically adsorbed oxygen. The ratios of O"/O' for supported and substituted samples suggested that more active Oxygen vacancy on the ceria surface<sup>10</sup>. Occurrence of Ce<sup>3+</sup> being related to oxygen vacancy formation, the higher Ce<sup>3+</sup> concentration in the catalyst should indicate more generation of oxygen vacancies. High-resolution O1s XPS results and spectra are given in the Figure S8 and table S3 which listed-out the binding energies (BE) and the area of each peak. The ratio of O''/O' or absorbed oxygen to the lattice oxygen was calculated to illustrate the content of oxygen vacancy around Ce<sup>3+</sup> sites on the catalyst surface. The surface chemical state of Ce 3d and the high percentage of Ce3+ imply the existence of nonstoichiometric oxygen vacancy<sup>3, 8</sup>.



**Figure S6**: shows the O 1s XPS spectra of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

**Table S.3** O1s XPS peak deconvolution results of (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$ 

| Peaks<br>assignment | Binding<br>energy<br>(eV) | Ni<br>supported<br>over CeO <sub>2</sub><br>(Area) | Co<br>supported<br>over CeO <sub>2</sub><br>(Area) | Ni-<br>substituted<br>CeO <sub>2</sub><br>(Area) | Co-<br>substituted<br>CeO <sub>2</sub><br>(Area) |
|---------------------|---------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 0'                  | 529.01-<br>529.5eV        | 140037.13                                          | 178677.3                                           | 86936.96                                         | 105438.32                                        |
| 0"                  | 531.01-<br>531.9.5eV      | 53095.17                                           | 69274.17                                           | 95464.25                                         | 144595.24                                        |
| 0'''                | 532.01-<br>532.9eV        | -                                                  | -                                                  | 76314                                            | 64631.9                                          |
|                     |                           |                                                    |                                                    |                                                  |                                                  |
| O''/O'              |                           | 0.37915066                                         | 0.38771                                            | 1.09809                                          | 1.371373                                         |

|       | Catalyst                              | Maximum<br>conversion<br>of CH <sub>4</sub> at<br>800 °C<br>(%) | Maximum<br>conversion<br>of CO <sub>2</sub> at<br>800 °C<br>(%) | H <sub>2</sub> /CO<br>at 800<br>°C | Loss<br>and<br>n | Loss in conversion<br>and Yield after 300<br>minutes (%) |    | on<br>600      |
|-------|---------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|------------------|----------------------------------------------------------|----|----------------|
|       |                                       |                                                                 |                                                                 |                                    | CH <sub>4</sub>  | CO <sub>2</sub>                                          | CO | H <sub>2</sub> |
| Table | Ni<br>Supported<br>CeO <sub>2</sub>   | 100                                                             | 84                                                              | 0.5                                | 15               | 12                                                       | 18 | 11             |
|       | Co<br>Supported<br>CeO <sub>2</sub>   | 98                                                              | 91                                                              | 0.6                                | 4                | 5                                                        | 9  | 11             |
|       | Ni<br>Substituted<br>CeO <sub>2</sub> | -                                                               | -                                                               | -                                  | -                | -                                                        | -  | -              |
|       | Co<br>Substituted<br>CeO <sub>2</sub> | 90.2                                                            | 97                                                              | 0.8                                | 6                | 5                                                        | 7  | 6              |

S.4 Summary of the Catalytic Activity in dry reforming of methane on the different Catalysts

| Catalysts                          | ysts Preparation Reaction condition            |                                                                                                                                                                                                 | Conve           | rsion           | Reference |
|------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------|
|                                    | Method                                         |                                                                                                                                                                                                 | CH <sub>4</sub> | CO <sub>2</sub> |           |
| Co substituted<br>CeO <sub>2</sub> | Solution<br>combustion<br>method               | Temperature= $800^{\circ}$ C, 1atm,<br>CH <sub>4</sub> /CO <sub>2</sub> /N <sub>2</sub> =1/1/18 and the<br>flow rate was 20mLmin <sup>-1</sup> ,<br>GHSV =~12000 h <sup>-1</sup><br>TOS=20hours | 90%             | 92%             | This work |
| Co/CeO <sub>2</sub>                | Incipient<br>wetness<br>impregnation<br>method | 700 °C with 50 sccm CH <sub>4</sub> :<br>CO2: Ar (1:1:3) gas flow<br>TOS=5 h.                                                                                                                   | 20%             | 25%             | 11        |

Table S.5 Selected Co based DRM catalysts reported in the literature and their activity

| Co/TiO <sub>2</sub>                  | Incipient<br>wetness<br>impregnation<br>method                                 | CH <sub>4</sub> /CO <sub>2</sub> =1; 1023 K;<br>2.0 MPa;                           | ~28% | _   | 12 |
|--------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|-----|----|
| 26Co/ZrO <sub>2</sub>                | Incipient<br>wetness<br>impregnation<br>method                                 | CH4/CO2/He (10:10:80 in volume). T=750 °C                                          | 85%  | _   | 13 |
| Co/γ -Al <sub>2</sub> O <sub>3</sub> | Incipient<br>wetness<br>impregnation<br>method                                 | (CH4/CO2 =1/1)<br>flow rate =20 ml/min<br>T=900 °C                                 | 90%  | -   | 14 |
| 15Co/Al <sub>2</sub> O <sub>3</sub>  | Incipient<br>wetness<br>impregnation<br>method                                 | CH <sub>4</sub> : CO2: N <sub>2</sub> = 1:1:3 (vol<br>ratio), temperature = 873 K. | 20%  | -   | 15 |
| Co/SiO <sub>2</sub>                  | Incipient<br>wetness<br>impregnation<br>method<br>oleyl<br>amine/oleic<br>acid | T=700 °C<br>CH <sub>4</sub> /CO <sub>2</sub> /N <sub>2</sub> =33.3:33.3:33.3       | 30%  | 30% | 16 |
| Co/SiO <sub>2</sub> derived<br>from  | Hydrothermal                                                                   | T = 750 °C, He: CH4:<br>CO2 = 1:1:1 with a total                                   | 5%   | 10% | 17 |

| phyllosilicates                                                | method                                         | flow rate of 30 ml/min                                  |     |     |    |
|----------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|-----|-----|----|
| Co/MgO-<br>Al <sub>2</sub> O <sub>3</sub> from<br>hydrotalcite | Incipient<br>wetness<br>impregnation<br>method | T=800 °C<br>CH <sub>4</sub> /CO <sub>2</sub> =40:60     | 20% | 20% | 18 |
| Co/ZSM-5                                                       | Incipient<br>wetness<br>impregnation<br>method | T=800 °C<br>CH <sub>4</sub> /CO <sub>2</sub> /=20:20:60 | 65% | 75% | 19 |

## SI.7: Thermodynamic equilibrium conversion with Carbon formation calculations:

Total Gibbs free energy minimization was employed to evaluate the thermodynamics of dry reforming reaction using Aspen Plus V9, Aspen Tech.



**Figure.S7.** (a)Flowsheet used in Aspen Plus simulation to carry out thermodynamic calculations via the Gibbs free energy minimization method. (b) Equilibrium composite (c) Equilibrium conversion of  $CH_4$  And  $CO_2$  (d) Equilibrium Yield of  $H_2$  And CO. All results were obtained by considering carbon formation. Feedstock: 0.020 kmol  $CH_4$  +0.020 kmol  $CO_2$  as per our results obtained from GC Pressure: 1 atm; Temperature: 200-800 °C.

SI.8: Long term  $H_2$  and CO Yield curve for the dry reforming of methane over Ni supported over CeO<sub>2</sub>, Co supported over CeO<sub>2</sub>, Co-substituted CeO<sub>2</sub>



**Figure S8:** Catalytic activity for the dry reforming of methane: (a) CO Yield (b)  $H_2$  Yield as function of temperature. Reaction condition: Temperature=800°C, 1atm,  $CH_4/CO_2/N_2 = 1/1/18$  and the flow rate was 20mLmin<sup>-1</sup>, GHSV =~12000mL/(g.h) For Ni supported over CeO<sub>2</sub>, Co supported over CeO<sub>2</sub>, Co-substituted CeO<sub>2</sub>.

SI.9: Long term  $CH_4$  and  $CO_2$  conversion curve for the dry reforming of Cosubstituted  $CeO_2$ 



| Catalyst                                                      | CH4/CO2<br>(Vol.%) | GHSV                                                                   | Operati<br>ng<br>Temper<br>ature<br>(T°C) | TOS<br>(hr.) | Amount of<br>Deposited Carbon<br>After the reaction<br>(by TGA) | Ref.         |
|---------------------------------------------------------------|--------------------|------------------------------------------------------------------------|-------------------------------------------|--------------|-----------------------------------------------------------------|--------------|
| Co substituted CeO <sub>2</sub>                               | 30/30              | 12000mL/(g.h)                                                          | 750                                       | 100          | 3.7 %                                                           | This<br>work |
| 5 wt. % Ni/14.7 wt. % Ce<br>- SBA-16                          | 33/33              | 30,000  mL<br>$h^{-1} \text{ g}_{\text{cat}}^{-1}$                     | 700                                       | 50           | 7%                                                              | 20           |
| 12 wt.% Ni/Ce <sub>0.8</sub> Gd <sub>0.2</sub> O <sub>2</sub> | 33/33              | 28,800 h <sup>-1</sup>                                                 | 800                                       | 100          | 18%                                                             | 21           |
| Ni/CeO <sub>2</sub>                                           | 40/40              | $\frac{150,000 \text{ mL}}{\text{h}^{-1} \text{ g}_{\text{cat}}^{-1}}$ | 800                                       | 50           | 19.4%                                                           | 22           |
| Ni/Zr-DC                                                      | 40/40              | 150,000 mL                                                             | 800                                       | 50           | 13.6%                                                           | 22           |

**Figure S9:** Catalytic activity for the dry reforming of methane:  $CO_2$  and  $CH_4$  conversion as function of temperature. Reaction condition: Temperature=750 °C, 1atm,  $CH_4/CO_2/N_2 = 6/6/8$  and the flow rate were 20mLmin<sup>-1</sup>, GHSV =~12000mL/ (g.h) (b) TGA curve after the 100hr TOS for Co-substituted CeO<sub>2</sub>

**Table S6.** Amount of Carbon deposited by various catalyst in DRM with different Feed vol.% concentration  $(CH_4/CO_2=1)$ 

|                                                          |       | $h^{-1} g_{cat}^{-1}$                                                                   |             |    |      |    |
|----------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|-------------|----|------|----|
| Ni/Sm-DC                                                 | 40/40 | $\frac{150,000 \text{ mL}}{\text{h}^{-1} \text{ g}_{\text{cat}}^{-1}}$                  | 800         | 50 | 3.3% | 22 |
| Ni/La-DC                                                 | 40/40 | $\frac{150,000 \text{ mL}}{\text{h}^{-1} \text{ g}_{\text{cat}}^{-1}}$                  | 800         | 50 | 2.0% | 22 |
| Ni/mp-Ce <sub>1-x</sub> Ni <sub>x</sub> O <sub>2-y</sub> | 50/50 | $12000 \text{ mL} (h g_{cat})^{-1}$                                                     | 700         | 40 | 10%  | 23 |
| $Ni/n-Ce_{1-x}Ni_xO_{2-y}$                               | 50/50 | $12000 \text{ mL} (h g_{cat})^{-1}$                                                     | 700         | 40 | 20%  | 23 |
| Ni–Al                                                    | 50/50 | $\begin{array}{c} 36,000 \text{ mL} \\ h^{-1} \text{ g}^{-1}_{\text{cat}} \end{array}$  | 700         | 80 | 15%  | 24 |
| Ni-1Ce-Al                                                | 50/50 | $\begin{array}{c} 36,000 \text{ mL} \\ h^{-1} \text{ g}^{-1}_{\text{cat}} \end{array}$  | 700         | 80 | 16%  | 24 |
| Ni-2Ce-Al                                                | 50/50 | $\begin{array}{c} 36,000 \text{ mL} \\ h^{-1} \text{ g}^{-1}_{\text{ cat}} \end{array}$ | 700         | 80 | 12%  | 24 |
| Ni/Al-IMP                                                | 50/50 | $\begin{array}{c} 36,000 \text{ mL} \\ h^{-1} \text{ g}^{-1}_{\text{ cat}} \end{array}$ | 700         | 80 | 52%  | 24 |
| (a)<br>Co/Co<br>NiCo/C<br>CoNi/                          |       |                                                                                         | <b>b)</b>   |    |      |    |
| (c)<br>SI. 1                                             |       | 7                                                                                       | d)<br>200nn |    |      |    |

**Figure S 10**: TEM images of spent catalyst- (a) Ni supported over  $CeO_2$  (b) Co supported over  $CeO_2$  (c) Ni substituted  $CeO_2$  (d) Co substituted  $CeO_2$  Reaction condition: Temperature= $800^{0}C$ , 1atm,  $CH_4/CO_2/N_2 = 1/1/18$  and the flow rate was  $20mLmin^{-1}$ , GHSV =12000mL/(g.h)

SI.11:TGA profiles of Ni/Co substituted and supported catalysts after CH<sub>4</sub> decomposition test



*Figure S11:*TGA profiles of Ni/Co substituted and supported catalysts after  $CH_4$  decomposition test

SI.12: Schematic sketch for mechanism on the basis of transient studies of methane decomposition and  $CO_2$  reaction with deposited carbon after  $CH_4$  decomposition on the Ni and Co supported the  $CeO_2$ .



*Figure S12:* Schematic sketch for mechanism on the basis of transient studies of methane decomposition and  $CO_2$  reaction with deposited carbon after  $CH_4$  decomposition on the Ni and Co supported the CeO<sub>2</sub>.

SI.13: Schematic showing methane on Ni- and Co- substituted catalyst surface used to calculate adsorption energy at different sites



Figure S13: Schematic showing methane on Ni- and Cosubstituted catalyst surface used to calculate adsorption

SI.14: Percentage  $CH_4$  and  $CO_2$  conversions for dry reforming of methane reaction at different flow rates for Co substituted  $CeO_2$ 



*Figure S14:* Percentage  $CH_4$  and  $CO_2$  conversions for dry reforming of methane reaction at different flow rates for Co substituted  $CeO_2$ 



SI.15: Apparent activation energy estimation for Co substituted CeO<sub>2</sub>

**Figure S15:** (a) Effects of space-time (W/F) on % conversion of methane at different temperature (b)Reaction rate curve (c)Arrhenius plots of dry reforming of methane over Co Substituted CeO<sub>2</sub> catalyst. Reaction conditions: T = 723-798 K, CH<sub>4</sub>/CO<sub>2</sub>/N<sub>2</sub>=1/1/18, Catalyst 100 mg

#### 2- Reference:

- M. Sukumar, L. J. Kennedy, J. J. Vijaya, B. Al-Najar and M. Bououdina, *New Journal of Chemistry*, 2018, 42, 18128-18142.
- 2. N. K. Eswar, V. V. Katkar, P. C. Ramamurthy and G. Madras, *Industrial & Engineering Chemistry Research*, 2015, **54**, 8031-8042.
- S. Sultana, S. Mansingh, M. Scurrell and K. M. Parida, *Inorganic Chemistry*, 2017, 56, 12297-12307.
- A. Q. Wang, P. Punchaipetch, R. M. Wallace and T. D. Golden, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21, 1169-1175.
- 5. P. Burroughs, A. Hamnett, A. F. Orchard and G. Thornton, *Journal of the Chemical Society, Dalton Transactions*, 1976, DOI: 10.1039/DT9760001686, 1686-1698.
- Z. Wu, M. Li, J. Howe, H. M. Meyer and S. H. Overbury, *Langmuir*, 2010, 26, 16595-16606.
- A. Velamakanni, K. J. Ganesh, Y. Zhu, P. J. Ferreira and R. S. Ruoff, Advanced Functional Materials, 2009, 19, 3926-3933.
- S. Mansingh, D. K. Padhi and K. M. Parida, *Catalysis Science & Technology*, 2017, 7, 2772-2781.
- 9. F. Zhao, S. Li, X. Wu, R. Yue, W. Li and Y. Chen, *RSC Advances*, 2019, 9, 2343-2352.
- S. A. Ansari, M. M. Khan, M. O. Ansari, S. Kalathil, J. Lee and M. H. Cho, *RSC Advances*, 2014, 4, 16782-16791.

- 11. H. Ay and D. Üner, *Applied Catalysis B: Environmental*, 2015, **179**, 128-138.
- 12. K. Nagaoka, K. Takanabe and K.-i. Aika, *Applied Catalysis A: General*, 2004, **268**, 151-158.
- 13. V. M. Gonzalez-delaCruz, R. Pereñiguez, F. Ternero, J. P. Holgado and A. Caballero, *The Journal of Physical Chemistry C*, 2012, **116**, 2919-2926.
- 14. E. Ruckenstein and H. Y. Wang, *Journal of Catalysis*, 2002, 205, 289-293.
- 15. S. Sengupta, K. Ray and G. Deo, *International Journal of Hydrogen Energy*, 2014, **39**, 11462-11472.
- 16. X. Gao, Z. Tan, K. Hidajat and S. Kawi, *Catalysis Today*, 2017, **281**, 250-258.
- 17. Z. Bian and S. Kawi, *Journal of CO2 Utilization*, 2017, 18, 345-352.
- J. Xu, W. Zhou, Z. Li, J. Wang and J. Ma, *International Journal of Hydrogen Energy*, 2009, 34, 6646-6654.
- J. Estephane, S. Aouad, S. Hany, B. El Khoury, C. Gennequin, H. El Zakhem, J. El Nakat, A. Aboukaïs and E. Abi Aad, *International Journal of Hydrogen Energy*, 2015, 40, 9201-9208.
- 20. S. Zhang, S. Muratsugu, N. Ishiguro and M. Tada, ACS Catalysis, 2013, 3, 1855-1864.
- H. R. Gurav, S. Dama, V. Samuel and S. Chilukuri, *Journal of CO2 Utilization*, 2017, 20, 357-367.
- I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. Di Bartolomeo, J. K. Kesavan, S. S. Kumar and K. Selvakumar, *Journal of CO2 Utilization*, 2019, 30, 63-78.
- J. Deng, W. Chu, B. Wang, W. Yang and X. S. Zhao, *Catalysis Science & Technology*, 2016, 6, 851-862.
- 24. N. Wang, K. Shen, L. Huang, X. Yu, W. Qian and W. Chu, *ACS Catalysis*, 2013, **3**, 1638-1651.