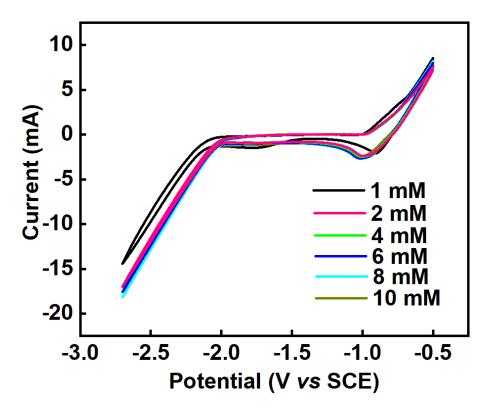
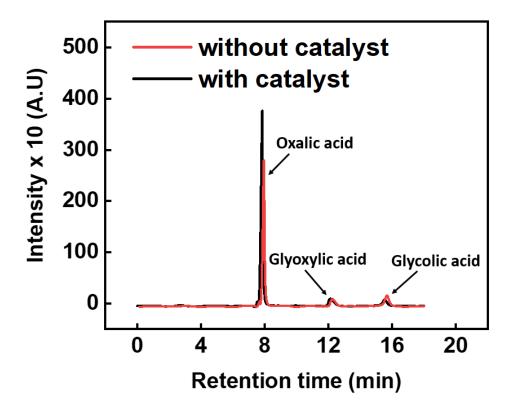
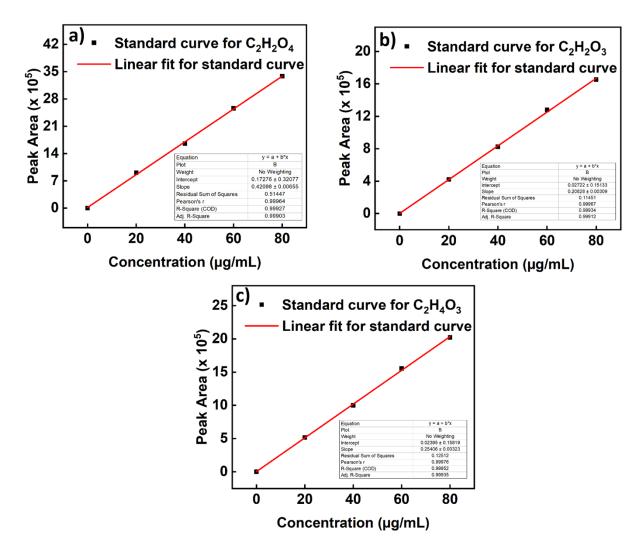

Supporting Information for:

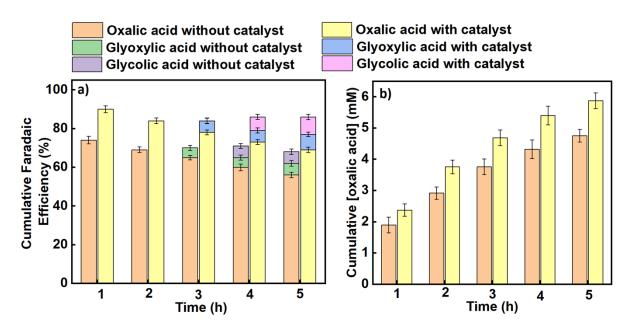
Optimising the Electrochemical Reduction of CO₂ to Oxalic Acid in Propylene Carbonate

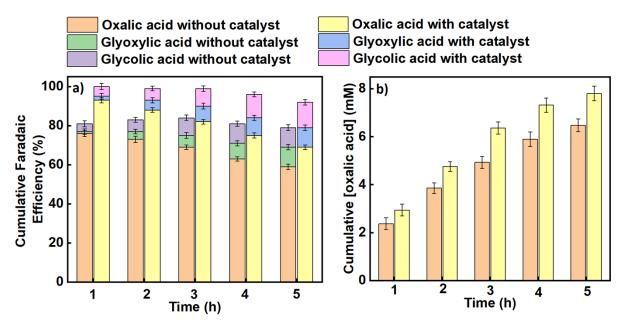

Halilu Sale^{1,2}, Gangi Reddy Ubbara¹, Mark D. Symes^{1*}

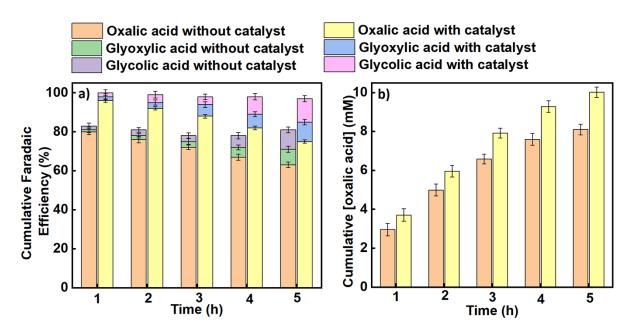
1. WestCHEM, School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK. 2. Energy Commission of Nigeria, Plot 701c Garki-Abuja, Nigeria

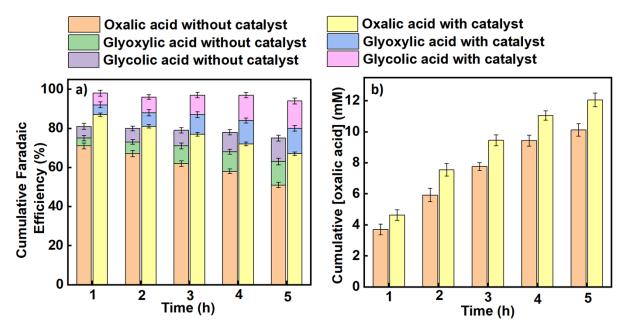

*Corresponding Author: Mark.Symes@glasgow.ac.uk


Figure S1: Schematic diagram of the single-cell experimental set-up used for the cyclic voltammetry experiments, using lead as a working electrode, platinum as a counter electrode and a saturated calomel electrode as the reference electrode at a temperature of 25 °C.


Figure S2: Cyclic voltammetry investigating the optimum concentration of the benzonitrile electrocatalyst needed for the electrochemical reduction of CO_2 in propylene carbonate, using lead as a working electrode with a surface area of 1.40 cm², platinum as a counter electrode and a saturated calomel electrode as the reference electrode at a temperature of 25 °C and scan rate of 50 mV/s.


Figure S3: Example HPLC signal showing the chromatograms retention time for the carboxylic acids detected at -2.2 (V vs SCE) in propylene carbonate (red) and propylene carbonate/benzonitrile (black).


Figure S4: Calibration curves for (a) Oxalic acid, (b) glyoxylic acid and (c) glycolic acid obtained from HPLC analysis of the standard solutions of the respective carboxylic acids.


Figure S5: The effect of benzonitrile on (a) the cumulative Faradaic efficiencies for the production of oxalic acid and its accompanying by-products in propylene carbonate, (b) the cumulative concentration of oxalic acid formed using Pb as a working electrode and Pt foil as a counter electrode at an applied potential of -2.3 V vs SCE in an H-cell at a temperature of 25 °C. Triplicate experiments were performed to obtain the error margin, and the results are calculated as the mean \pm standard deviation (n = 3).

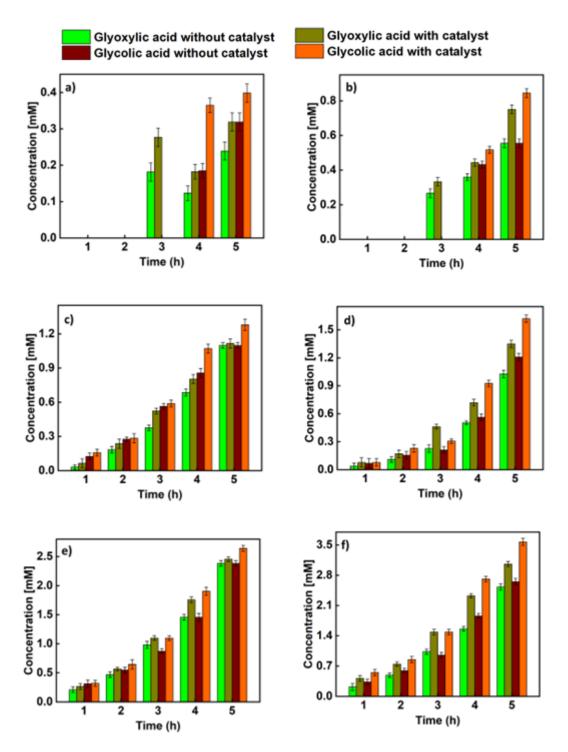

Figure S6: The effect of benzonitrile on (a) the cumulative Faradaic efficiencies for the production of oxalic acid and its accompanying by-products in propylene carbonate, (b) the cumulative concentration of oxalic acid formed using Pb as a working electrode and Pt foil as a counter electrode at an applied potential of -2.4 V vs SCE in an H-cell at a temperature of 25 °C. Triplicate experiments were performed to obtain the error margin and the results are calculated as the mean \pm standard deviation (n = 3).

Figure S7: The effect of benzonitrile on (a) the cumulative Faradaic efficiencies for the production of oxalic acid and its accompanying by-products in propylene carbonate, (b) the cumulative concentration of oxalic acid formed using Pb as a working electrode and Pt foil as a counter electrode at an applied potential of -2.5 V vs SCE in an H-cell at a temperature of 25 °C. Triplicate experiments were performed to obtain the error margin and the results are calculated as the mean \pm standard deviation (n = 3).

Figure S8: The effect of benzonitrile on (a) the cumulative Faradaic efficiencies for the production of oxalic acid and its accompanying by-products in propylene carbonate, (b) the cumulative concentration of oxalic acid formed using Pb as a working electrode and Pt foil as a counter electrode at an applied potential of -2.6 V vs SCE in an H-cell at a temperature of 25 °C. Triplicate experiments were performed to obtain the error margin and the results are calculated as the mean \pm standard deviation (n = 3).

Figure S9: The concentration of notable by-products accompanying the electrochemical reduction of CO_2 to oxalic acid in propylene carbonate and propylene carbonate/benzonitrile on a Pb cathode at an applied potential of a) –2.2 V, b) –2.3 V, c) –2.4 V, d) –2.5 V, e) –2.6 V, f) –2.7 V vs. SCE in an H-cell at 25 °C for 5 hours.

Table S1: The effect of benzonitrile on current densities for electrochemical reduction of CO_2 to oxalic acid in propylene carbonate on a Pb cathode at an applied potential of -2.2 to -2.7 (V vs. SCE) in an H-cell at 25 °C, averaged over 5 hours.

Entry	Applied Potential (V vs SCE)	Average Current Density (mA/cm ²)		
		Without catalyst	With catalyst	
1	-2.2	-4.49	-5.11	
2	-2.3	-5.61	-7.10	
3	-2.4	-7.00	-8.71	
4	-2.5	-8.77	-10.96	
5	-2.6	-11.0	-13.68	
6	-2.7	-13.7	-16.90	

Table S2: The effect of benzonitrile on the average Faradaic efficiencies of the notable products of electrochemical reduction of CO_2 to oxalic acid in propylene carbonate on a Pb cathode at an applied potential of -2.2 to -2.7 (V vs. SCE) in an H-cell at 25 °C, averaged over

Entry	Applied	Average Faradaic Efficiency of the Products (%)					
	Potential	Oxalic Acid		Glyoxylic Acid		Glycolic Acid	
	(V vs SCE)	Without	With	Without	With	Without	With
		catalyst	catalyst	catalyst	catalyst	catalyst	catalyst
1	-2.2	61.17	75.40	1.80	2.60	1.40	2.25
2	-2.3	64.40	78.84	3.20	4.0	2.40	3.20
3	-2.4	68.22	82.25	5.80	6.83	7.80	9.01
4	-2.5	71.60	86.60	3.80	5.60	4.8	6.20
5	-2.6	63.80	77.80	8.2	9.40	8.60	10.20
6	-2.7	59.60	72.40	8.2	9.40	9.2	10.8

5 hours.

Table S3: The effect of benzonitrile on the yield of the notable products of electrochemical reduction CO_2 in propylene carbonate on a Pb cathode at an applied potential of -2.2 to -2.7 (V vs. SCE) in an H-cell at 25 °C, averaged over 5 hours.

Entry	Applied	Product Concentration (mM)					
	Potential	Oxalic Acid		Glyoxylic Acid		Glycolic Acid	
	(V vs SCE)	Without	With	Without	With	Without	With
		catalyst	catalyst	catalyst	catalyst	catalyst	catalyst
1	-2.2	4.05	4.68	0.23	0.31	0.35	0.39
2	-2.3	4.75	5.88	0.56	0.75	0.60	0.84
3	-2.4	6.47	7.81	1.09	1.11	1.09	1.45
4	-2.5	8.10	10.12	1.12	1.35	1.21	1.62
5	-2.6	10.14	12.05	2.38	2.45	2.38	2.64
6	-2.7	12.65	15.81	2.53	3.06	2.65	3.57