Supporting Information

Unravelling the Role of Iron Carbide in ORR Catalysts for Rechargeable Zinc-Air Battery: A Comprehensive Kinetics & Mechanistic Study

S. Arya Gopal, Anook Nazer Eledath and Azhagumuthu Muthukrishnan

School of Chemistry, Indian Institute of Science Education Research Thiruvananthapauram, Maruthamala P.O., Vithura 695 551, Kerala, India

Email: <u>muthukrishnan@iisertvm.ac.in</u>

No.	Contents	Page No.
	Estimating procedure for n , $%H_2O_2$, and rate constants	S2
Fig. S1	PXRD pattern of Fe ₃ C/C composites before acid wash	S3
Fig. S2	PXRD pattern of Fe ₃ C/KB sample left after TGA analysis	S4
Fig. S3	The XPS survey spectra of Fe ₃ C/C and Fe ₃ C/NC composites	S5
Fig. S4	The C1s deconvoluted XPS spectra of Fe ₃ C/C composites	S6
Fig. S5	Fe-2p XPS spectra of Fe ₃ C/NC compounds	S7
Fig. S6	BET isotherm of Fe ₃ C/C composites before acid wash	S 8
Fig. S7	The pore size distribution curve for bare carbon substrate and its	G 0
	composites	S9
Fig. S8	TGA plots of Fe_3C/C composites before acid wash	S10
Fig. S9	TEM images of Fe_3C/C compounds before acid wash	S11
Fig. S10	HRTEM image of Fe_3C/C and Fe_3C/NC compounds	S12
Fig. S11	Linear sweep voltammograms at various rotational speeds	S13
Fig. S12	Potential dependent rate constants of ORR on bare carbon	
	supports	S14
Fig. S13	Open circuit potential of Fe ₃ C/NC catalysts and Pt/C+RuO ₂	
	catalyst	S15
Fig. S14	Discharge polarisation curve and specific capacity curves of	
	Pt/C+RuO ₂ and Pt/C+Ir/C	S16
Fig. 15	Chrage-discharge polarisation curves of Fe ₃ C/NVC with	
	benchmark catalysts	S17
Fig. 16	Discharge polarisation curve and specific capacity of Fe ₃ C/NVC,	
	Fe ₃ C/VC and NVC catalysts	S18
Fig. 17	Charge-discharge cycling studies of various compounds	S19
Fig. 18	RRDE Voltammograms of physical mixture (Fe ₃ /C+NC)	S20
Table. S1	Table of Fe & N percentage from TGA and XPS	S21
Table. S2	Table of BET surface area of Fe ₃ C/C composite before acid	
	wash	S22
Table. S3	Table of atomic weight percentage of NC materials from	
	elemental analysis data	S23
Table. S4	Table of electrochemical parameters estimated from RRDE	
	voltammograms	S24

Estimation of Number of Electron Transferred

The fraction of H₂O₂ produced can be calculated from the equation given below:

$$\% H_2 O_2 = \frac{2I_R/N}{I_D + I_R/N}$$
$$n = \frac{4I_D}{I_D + I_R/N}$$

Where, I_D and I_R are the disk and ring currents and N is the collection efficiency of the ring.

Rate constant Calculation

The equations developed by Hsueh et al. to estimate the ORR rate constants from the disk and ring currents of RRDE voltammograms are:

$$k_1 = m_2 Z_1 \frac{b_1 N - 1}{b_1 N + 1}$$
 $k_2 = \frac{2m_2 Z_1}{b_1 N + 1}$ $k_3 = \frac{m_1 Z_2 N}{b_1 N + 1}$

Where k_2 and k_3 are the kinetic rate constants for the reduction of oxygen to hydrogen peroxide and to water, respectively, and k_1 is the kinetic rate constant for direct four-electron reduction to water. Here, I_D and I_R are the disk and ring currents, I_{DL} is the limiting disk current, and ω is the rotational speed of the RRDE.

 b_1 and m_1 represent the intercept and slope of I_D/I_R vs $\omega^{-1/2}$ plot, and m_2 represent the slope of the $I_{DL}/(I_{DL}-I_D)$ vs $\omega^{-1/2}$ plot. The constants Z_1 and Z_2 are calculated from the diffusion coefficient (*D*) and kinematic viscosity (*v*).

$$Z_1 = D_{0_2}^{2/3} v^{-1/6}$$
$$Z_2 = D_{H_2 0_2}^{2/3} v^{-1/6}$$

Figure S1. Powder X-ray diffraction patterns of Fe₃C and Fe₃C/C before acid wash (BAW)

Figure S2. Powder X-ray diffraction pattern of Fe_3C/KB composite after the thermogravimetric analysis under air flow. The PXRD pattern clearly matches with α -Fe₂O₃ pattern (JSPDS 33-0664).

Figure S3. The X-ray photoelectron spectra of (a) Fe₃C/KB (b) Fe₃C/VC (c) Fe₃C/rGO and (d) Fe₃C/NKB (e) Fe₃C/NVC (f) Fe₃C/NrGO composites.

Figure S4. The C1s X-ray photoelectron spectra of (a) Fe₃C/KB (b) Fe₃C/VC (c) Fe₃C/rGO composites.

Figure S5. Fe-2p X-ray photoelectron spectra of Fe₃C/NC compounds.

Figure S6. BET isotherms of (a) Fe₃C/KB(BAW) (b) Fe₃C/VC(BAW) (c) Fe₃C/rGO(BAW).

Figure S7. The pore size distribution curve comparison curve for bare carbon substrate and its composites. The highlighted (red) portion refers to the microporous region.

Figure S8. Thermogravimetric plots of Fe_3C/C composites before acid wash in air atmosphere.

Figure S9. TEM images of the (a) $Fe_3C/KB(BAW)$, (b) $Fe_3C/VC(BAW)$ and (c) $Fe_3C/rGO(BAW)$

(BAW refers to before acid wash)

Figure S10. High resolution TEM images of (a) Fe₃C/KB, (b) Fe₃C/VC, (c) Fe₃C/rGO, (d) Fe₃C/NKB, (e) Fe₃C/NVC and (f) Fe₃C/NrGO

Figure S11. The linear sweep voltammograms of various materials used in this studies on GC disk electrode at O₂-saturated 0.1 M KOH electrolyte solution at different rotational speed. The upper and lower panel in each graph represent the ring and disk currents of RRDE voltammograms, respectively. The colours represents the different rotational speeds; 400 (black), 625 (red), 900 (dark green), 1225 (blue), 1600 (pink), 2025 (brown) and 2500 rpm (light green). Scan rate: 10 mVs⁻¹

Figure S12. Potential dependent rate constants of the ORR on bare carbon supports (a) KB, (b) VC and (c) rGO

Figure S13. Measurement of open circuit potential of the Fe_3C/NC catalysts and the benchmark $Pt/C+RuO_2$ and Pt/C+Ir/C catalysts

Figure S14. Discharge polarisation curve of the benchmark (a) $Pt/C+RuO_2$ and (c) Pt/C+Ir/C catalysts. The right y-axis and the blue line refers to the power density values. Discharge chronopotentiometery curves at constant current of 20 mAcm⁻² of (b) $Pt/C+RuO_2$ and (d) Pt/C+Ir/C.

Figure S15. Polarisation curves (both Charge and discharge) of the benchmark Pt/C+RuO₂ (1:1) catalysts with the active and stable Fe₃C/NVC catalysts.

Figure S16. (a) Discharge polarisation curve of Fe_3C/NVC , Fe_3C/VC and NVC catalysts. (b) Specific capacity profile at the discharge current density of 20 mAcm⁻² of the Fe_3C/NVC , Fe_3C/VC and NVC catalysts.

Figure S17. Galvanostatic charge-discharge cycles at 5 mAcm⁻² current density with the charging and discharging time of 10 minutes each. The potential values above or below the dotted line indicating the degradation of the catalytic materials.

Figure S18. Linear sweep voltammograms of the ORR on the physical mixture of Fe_3C and NC (Fe_3C+NC , N refers to KB or VC or rGO) catalysts at the rotational speed of 1600 rpm and the scan rate of 10 mVs⁻¹. The other compounds like Fe_3C/C , Fe_3/NC and NC are shown to compare the ORR activity.

Compound	%Fe (from TGA)	% N (CHN analysis)
Fe ₃ C/KB	2.7	
Fe ₃ C/VC	2.3	
Fe ₃ C/rGO	12	
Fe ₃ C/NKB	12	4.94
Fe ₃ C/NVC	2.6	1.20
Fe ₃ C/NrGO	34	2.95

Table S1. Percentage of Fe-content and N-content from TG and CHN analysis.

Compound	$S_{ m total}$	$^{a}S_{\rm micro}$	^b S _{meso}	$^{c}V_{\text{total}}$	^d V _{micro}	^e V _{meso}
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
Fe ₃ C/KB(BAW)	378	3.42	165.86	0.590	0.017	0.118
Fe ₃ C/VC(BAW)	226	24.99	66.00	0.323	0.005	0.05
Fe ₃ C/rGO(BAW)	92	2.02	94.64	0.229	0.001	0.073

Table S2.BET surface area obtained from N_2 sorption studies (BAW)

^amicroporous surface area

^bmesoporous surface area

^cTotal pore volume

^dmicroporous Volume obtained from T-plot

^emesoporous Volume from Barett-Joyner-Halenda (BJH)

Compound	%N	%C	%Н
KB/NC	2.08	85.58	0.45
VC/NC	1.09	87.15	0.35
GO/NC	10.42	77.80	0.30

 Table S3. Elemental analysis data of N-doped carbon substrate.

S. No.	Composite	$E_{\text{onset}}(V)^{a}$	$E_{\frac{1}{2}}(V)$	$j_{\rm DL}$ (mA cm ⁻²) ^b	п
1	Fe ₃ C	0.81	0.59	2.3	3
2	Fe ₃ C/KB	0.89	0.69	4.6	3.5
3	Fe ₃ C/VC	0.85	0.64	4.3	3.3
4	Fe ₃ C/rGO	0.92	0.73	2.6	2.9
5	Fe ₃ C/NKB	0.96	0.80	4.9	3.9
6	Fe ₃ C/NVC	0.90	0.72	5.3	3.9
7	Fe ₃ C/NrGO	0.95	0.73	3.5	3.5
8	N/KB	0.93	0.70	5.1	3.7
9	N/VC	0.88	0.67	5.0	3.6
10	N/rGO	0.94	0.71	3.6	3.9
11	KB900	0.86	0.68	4.6	2.5
12	VC900	0.79	0.62	3.7	2.8
13	rGO	0.89	0.68	2.2	2.7
14	$\frac{\text{Pt/C (20)}}{\mu \text{g}_{\text{Pt}}\text{cm}^{-2}}$	0.99	0.86	5.4	3.95

Table S4. Electrochemical Parameters of synthesised compounds.

 $^{a}E_{\text{onset}}$ measured at which current density reaches 10 μ Acm⁻²

 ${}^{b}j_{DL}$ values measured at 0.3V in case of all compounds for uniform comparison