Supplementary Information

Phase-engineered nickel sulfide and phosphide (NiS-Ni₂P) heterostructure for enhanced hydrogen evolution performance supported with DFT analysis

Jiban K. Das,^{a, b} Nachiketa Sahu,^{a, b} Pratap Mane,^c Brahmananda Chakraborty^{*},^{d, e} and J. N. Behera^{* a, b}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India
^bCentre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
^c Seismology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
^d High Pressure & Control Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

^e Homi Bhabha National Institute, Mumbai-400094, India

E-mail: jnbehera@niser.ac.in E-mail: brahma@barc.gov.in

Fig. S1 Schematic representation of electrode setup for the HER studies.

Fig. S2 Powder diffraction pattern of single-phase NiS₂.

Fig. S3 PXRD pattern of Ni₁₂P₅.

Fig. S4 FESEM pictures of NiS₂.

Fig. S5 FESEM analysis of Ni₁₂P₅.

Fig. S6 Elemental mapping images of NiS-Ni₂P show the presence of Ni (K), S (K), and P (K).

Fig. S7 EDAX spectrum with the elemental composition of NiS-Ni₂P heterostructure.

Fig. S8 LSVs for NiS-Ni₂P, NiS₂, Ni₁₂P₅, and Pt/C before and after an *iR* correction in 0.5 M H₂SO₄.

Fig. S9 (a, b) Cyclic voltammetry curve recorded in $0.5 \text{ M H}_2\text{SO}_4$ at scan rates of 10-100 mV/s for NiS₂ and Ni₁₂P₅.

Fig. S10 PXRD pattern for NiS-Ni₂P heterostructure after the 23 h of durability test at 10 mA/cm².

Fig. S11 (a, b) FESEM analysis of the active material NiS-Ni₂P after the chronopotentiometry test at the current density of 10 mA/cm².

Fig. S12 HRTEM analysis of NiS-Ni₂P heterostructures after the stability test.

Table S1. The comparison of HER performance in 0.5 M H₂SO₄ with reported nickel phosphides and sulfides electrode materials.

Electrocatalyst used	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Electrolyte	References
Ni2P	295	115	0.5 M H ₂ SO ₄	ChemElectroChem, 2017, 4(2), 340–344
Ni12P5	182	63	0.5 M H ₂ SO ₄	Chem.–Eur. J., 2018, 24(45), 11748–11754
Ni8P3	152	86	0.5 M H ₂ SO ₄	ACS Appl. Mater. Interfaces, 2016, 8(41), 27850–27858
NiS	250	51.2	0.5 M H ₂ SO ₄	RSC Adv., 2015, 5(127), 104740–104749
NiP ₂	172	62	0.5 M H ₂ SO ₄	RSC Adv., 2015, 5(14), 10290–10295
NiS2	249	55	0.5 M H ₂ SO ₄	J. Mater. Chem. A, 2017, 5, 10173–10181
Fe-doped NiS ₂	198	42	0.5 M H ₂ SO ₄	J. Mater. Chem. A, 2019, 7, 4971–4976
Ni2P	224	82	0.5 M H ₂ SO ₄	ACS Appl. Energy Mater. 2020, 3, 6525–6535
NiS-Ni ₂ P Heterostructure	147	68	0.5 M H ₂ SO ₄	This Work

Figure S13 Comparison of variation of change in Gibb's free energy with the reaction coordinates for all electrode materials, along with the value for the best catalyst Pt also included.

Table S2. Comparison of overpotential for HER between experimental and simulations.

System	HER(Expt.) mV	HER(Cal.) mV
NiS	232	261
Ni ₂ P	185	197
NiS-Ni ₂ P	147	145