# **Supporting Information**

# Modulated interfacial electron transfer of MXene-T<sub>x</sub>@CoS for oxygen

## evolution reaction

Xinying Du,<sup>a</sup> Xiaoyun Zhang,<sup>a</sup> Shifan Zhu,<sup>a</sup> Yixue Xu,<sup>a</sup> Yuqiao Wang\*<sup>a,b</sup>

a Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

b Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University,

Nanjing 210096, China

\* Corresponding author. Tel. & Fax +862552090621

E-mail address: yqwang@seu.edu.cn (Y. Wang).

#### **1. DFT Calculations**

DFT calculations were performed by using Vienna Ab initio Simulation Package (VASP). The generalized-gradient approximation with Perdew-Burke-Ernzerhof (GGA-PBE) was used for the exchange-correlation interactions. The cutoff energy was set to 500 eV for the plane wave basis. The convergence threshold was conducted as  $10^{-6}$  eV and 0.01 eV Å<sup>-1</sup> for energy and force, respectively. Monkhorst-Pack grid of  $3 \times 2 \times 1$  was used for the DFT calculations.

The four-electron pathway for OER in alkaline can be summarized as follows:

$$* + OH^{-} \rightarrow * OH + e^{-}$$
(1)

$$* OH + OH^{-} \rightarrow * O + H_2O(l) + e^{-}$$
(2)

$$* O + OH^{-} \rightarrow * OOH + e^{-}$$
(3)

\* OOH + OH 
$$\rightarrow$$
 \* + O<sub>2</sub>(g) + H<sub>2</sub>O(l) + e<sup>-</sup> (4)

where \* meaned the active site on the surface, \*OH, \*O and \*OOH represented the absorbed intermediates of OER.

The change of Gibbs free energy of each OER step ( $\Delta G_i$ , i = 1,2,3,4) was evaluated by the following equation:

$$\Delta G_i = \Delta E + \Delta Z P E - T \Delta S \tag{5}$$

where  $\Delta E$  was the change of total energy.  $\Delta ZPE$  and  $\Delta S$  were the change of the zero-point and entropic contribution, respectively.

The theoretical overpotential  $\eta$  was difined by the equation:

$$\eta = \max \left\{ \Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4 \right\} / e - 1.23V$$
(6)

#### 2. Materials characterization

The morphologies and micro-structures of samples were examined by transmission electron microscopy (TEM) and atomic force microscope (AFM, Dimension ICON). TEM, scanning transmission electron microscopy (STEM) and corresponding the energy-dispersive X-ray spectroscopy (EDS) elemental mappings were processed on a FEI Talos microscope with a 200 kV accelerating voltage. The crystalline phase was analysed by X-ray diffraction (XRD, Shimadzu XD-3A) using Cu K $\alpha$  radiation. X-ray photoelectron spectroscopy (XPS, Kratos AXIS ULTRA) was performed to investigate the valence state of the samples.

### 3. Results and discussions



Fig. S1 Interface electron transfer number of MXene-F@CoS, MXene=O@CoS, MXene-

OH@CoS and MXene@CoS.



Fig. S2 Adsorption models based on MXene-OH@CoS cell.





Fig. S3 Adsorption models based on MXene-F@CoS cell.

Fig. S4 Adsorption models based on MXene=O@CoS cell.



Fig. S5 Adsorption models based on MXene @CoS cell.



Fig. S6 OER overpotential ( $\eta_{OER}$ ) of CoS, MXene-F@CoS, MXene=O@CoS, MXene-

OH@CoS and MXene@CoS.



Fig. S7 Schematic illustration of constructing of MXene- $T_x@CoS$ .



Fig. S8 EDS spectra and the element contents: (a) MXene, (b) MXene-OH and (c) MXene=O,

(d) element contents (O and F) of three types of MXene- $T_x$ .



Fig. S9 TEM images of (a) MXene, (b) MXene-OH, and (c) MXene=O.



**Fig. S10** MXene@CoS: (a) TEM image, (b) HRTEM image, (c) SAED pattern, and (d) elemental mapping images. MXene=O@CoS: (e) TEM image, (f) HRTEM image, (j) SAED pattern, and (h) elemental mapping images.



Fig. S11 MXene@CoS: (a) XPS survey curve, spectra of (b) Ti 2p and (c) C 1s; MXene-

OH@CoS: (d) XPS survey curve, spectra of (e) Ti 2p and (f) C 1s; MXene=O@CoS: (g) XPS survey curve, spectra of (h) Ti 2p and (i) C 1s.



Fig. S12 LSV curves for different contents of CoS in MXene-OH@CoS (0.2, 0.5, 1.0 and 1.5

mmol represent the amount of substance of CoS in 40 mg MXene-OH).



Fig. S13 CV curves of (a) CoS, (b) MXene@CoS, (c) MXene-OH@CoS and (d) MXene=O@CoS.



Fig. S14 ECSA-normalized LSV curves of CoS, MXene@CoS, MXene-OH@CoS and MXene=O@CoS.



Fig S15 XRD patterns of MXene-OH@CoS after 10 h i-t test.



Fig. S16 Images of MXene-OH@CoS after 10 h i-t test: (a) TEM, (b) elemental mapping.



Fig. S17 XPS spectra of MXene-OH@CoS after 10 h i-t test: (a) C 1s, (b) O 1s, (c) S 2p, (d) Co 2p.

Table S1. Calculated values of gibbs free energy on MXene- $T_x$ @CoS slab models.

|               |       | G (eV) (U = 1.23 V)          |                 |                  |               |
|---------------|-------|------------------------------|-----------------|------------------|---------------|
| Intermediates | CoS   | MXene-F <sub>x</sub><br>@CoS | MXene=O<br>@CoS | MXene-OH<br>@CoS | MXene<br>@CoS |
| OH*           | -1.23 | -0.92                        | -1.01           | -1.28            | -1.79         |
| O*            | -1.29 | -1.11                        | -1.13           | -1.26            | -1.97         |
| OOH*          | -0.48 | -0.19                        | -0.28           | -0.69            | -1.01         |

Table S2 Interplanar spacing of MXene (002), MXene-OH (002), MXene=O (002).

| (002)    | 20    | d (nm) |
|----------|-------|--------|
| MXene    | 6.30° | 1.40   |
| MXene-OH | 5.90° | 1.50   |

| MXene=O 6.64° | 1.33 |
|---------------|------|
|---------------|------|

Table S3 The relative content of Co(III) and Co(II).

| Electrocatalyst | Co(III)/Co(II) |
|-----------------|----------------|
| CoS             | 0.80           |
| MXene@CoS       | 1.24           |
| MXene-OH@CoS    | 1.27           |
| MXene=O@CoS     | 1.26           |

| Table S4. Comparisons | of OER performance | of recently reported | catalysts |
|-----------------------|--------------------|----------------------|-----------|
| 1                     | 1                  | 2 1                  | 2         |

|                                                     | OER performance<br>(1M KOH) |                                        | _          |  |
|-----------------------------------------------------|-----------------------------|----------------------------------------|------------|--|
| Electrocatalyst                                     | η <sub>10</sub> (mV)        | Tafel slope<br>(mV dec <sup>-1</sup> ) | References |  |
| MXene-OH@CoS                                        | 244                         | 34.9                                   | This work  |  |
| CoOOH/Co <sub>9</sub> S <sub>8</sub>                | 246                         | 86.4                                   | [1]        |  |
| Ti <sub>3</sub> C <sub>2</sub> O <sub>2</sub> @GQDs | 250                         | 39.0                                   | [2]        |  |
| NiCo <sub>2</sub> (OH) <sub>x</sub> /MXene          | 268                         | 87.0                                   | [3]        |  |
| CeO <sub>2</sub> @CoS/MoS <sub>2</sub>              | 247                         | 64.0                                   | [4]        |  |
| Co@CoFe-P NBs                                       | 266                         | 34.5                                   | [5]        |  |
| NiFeLa-LDH/v-MXene                                  | 255                         | 40.0                                   | [6]        |  |
| P-CoS <sub>2</sub>                                  | 250                         | 90.0                                   | [7]        |  |
| CoP/Mo <sub>2</sub> CT <sub>x</sub>                 | 260                         | 51.0                                   | [8]        |  |
| N-CoS <sub>2</sub> YSSs                             | 278                         | 56.0                                   | [9]        |  |
| CoFeS <sub>2</sub> /NC                              | 340                         | 56.2                                   | [10]       |  |
| Fe/Co-CNT@MXene                                     | 360                         | 80.0                                   | [11]       |  |
| CoS/CoO PNRs                                        | 265                         | 76.7                                   | [12]       |  |

11

| Fe <sub>MC</sub> -MXene/GrH                                | 296 | 58.2 | [13] |
|------------------------------------------------------------|-----|------|------|
| H <sub>2</sub> PO <sup>2-</sup> /FeNi-LDH-V <sub>2</sub> C | 250 | 46.5 | [14] |
| NiFeP/MXene                                                | 286 | 35.0 | [15] |

Table S5. The fitted parameters for the Nyquist plots using the equivalent circuit.

| Catalyst     | $R_{s}\left(\Omega ight)$ | $\mathbf{R}_{1}\left( \Omega ight)$ | $\mathrm{R}_{2}\left(\Omega ight)$ | $R_{total}\left(\Omega ight)$ |
|--------------|---------------------------|-------------------------------------|------------------------------------|-------------------------------|
| MXene@CoS    | 2.238                     | 0.5322                              | 2.229                              | 2.761                         |
| MXene-OH@CoS | 1.605                     | 0.2397                              | 2.161                              | 2.401                         |
| MXene=O@CoS  | 1.607                     | 0.7442                              | 2.363                              | 3.107                         |
| CoS          | 2.277                     | -                                   | 6.749                              | 6.749                         |

#### References

N. Yao, G. Wang, H. Jia, J. Yin, H. Cong, S. Chen and W. Luo, *Angew Chem Int Ed Engl*, 2022, 61, e202117178.

2 Y. Ma, Y. An, Z. Xu, L. Cheng and W. Yuan, *Science China Materials*, 2022, **65**, 3053-3061.

3 J. Xu, X. Zhong, X. Wu, Y. Wang and S. Feng, J. Energy Chem., 2022, 71, 129-140.

4 W.-H. Huang, X. M. Li, X. F. Yang, H. Y. Zhang, P. B. Liu, Y. M. Ma and X. Lu, *Chem. Eng. J.*, 2021, **420**.

5 Y. Zhao, N. Dongfang, C. A. Triana, C. Huang, R. Erni, W. Wan, J. Li, D. Stoian, L. Pan,

P. Zhang, J. Lan, M. Iannuzzi and G. R. Patzke, Energy Environ. Sci., 2022, 15, 727-739.

6 M. Yu, J. Zheng and M. Guo, J. Energy Chem., 2022, 70, 472-479.

- 7 Y. Li, Z. Mao, Q. Wang, D. Li, R. Wang, B. He, Y. Gong and H. Wang, *Chem. Eng. J.*, 2020, **390**.
- 8 S. Liu, Z. Lin, R. Wan, Y. Liu, Z. Liu, S. Zhang, X. Zhang, Z. Tang, X. Lu and Y. Tian, *J. Mater. Chem. A*, 2021, **9**, 21259-21269.
- 9 X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao and X. W. D. Lou, *Adv.Sci.*, 2020,
  7, 2001178.
- 10 J. Cai, H. Liu, Y. Luo, Y. Xiong, L. Zhang, S. Wang, K. Xiao and Z. Q. Liu, *J. Energy Chem.*, 2022, **74**, 420-428.
- 11 C. Zhang, H. Dong, B. Chen, T. Jin, J. Nie and G. Ma, Carbon, 2021, 185, 17-26.

12 Y. Wang, X. Wu, X. Jiang, X. Wu, Y. Tang, D. Sun and G. Fu, Chem. Eng. J., 2022, 434.

13 T. H. Nguyen, P. K. L. Tran, V. A. Dinh, D. T. Tran, N. H. Kim and J. H. Lee, *Adv. Funct. Mater.*, 2023, 33, 2210101.

14 Y. Chen, H. Yao, F. Kong, H. Tian, G. Meng, S. Wang, X. Mao, X. Cui, X. Hou and J. Shi, *Appl. Catal. B-Environ.*, 2021, **297**, 120474. 15 J. Chen, Q. Long, K. Xiao, T. Ouyang, N. Li, S. Ye and Z. Q. Liu, *Sci. Bull.*, 2021, **66**, 1063-1072.