Aqueous Vanadium Complex for the Superior Electrolyte

of a Thermo-Electrochemical Cell

Teppei Yamada^{*†‡}, Takashi Kobayashi[§], Yusuke Wakayama[†], Fumitoshi Matoba^{†§}, Koichi Yatsuzuka^{II}, Nobuo Kimizuka[§], Hongyao Zhou[†],

[†] Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku,

Tokyo 13-0033, Japan

[‡] CREST, Japan Science and Technology Agency, 102-0076, Japan

§ Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0035, Japan

^{II} Department of Chemistry, Graduate School of Science, Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0035, Japan

Experimental section:

Preparation of the sulfuric acid solution of $V^{4+/5+}$ and measurement of the S_e

As a buffer for pH and supporting electrolyte, sodium hydrogen sulfate monohydrate (Wako Pure Chemical) was dissolved in distilled water at a concentration of 3 M. To this solution was added 50 mM vanadium(IV) sulfate *n*-hydrate (Wako) and 25 mM vanadium(V) oxide (Wako) as the reductant and the oxidant, respectively. The pH of the solution was adjusted by adding 12.5 M sodium hydroxide solution when needed.

The solution was poured into a house-made H-shaped tube (Fig. S2), and both sides were immersed in an ice-water bath and a water bath to generate a temperature difference (ΔT). Two platinum wires were introduced as electrodes, and the open circuit voltage (ΔV_{oc}) between them was monitored for various ΔT .

Measurement of electrochemical Peltier effect

850 μ L of the aqueous V^{4+/5+} electrolyte adjusted to pH 2.8 was injected into a custom-made electrochemical cell composed of a 1.1 cm-thick PEEK spacer and two platinum plate electrodes. The temperature of one of the electrodes was monitored by a thermistor (104JT-025, SEMITEC, Japan) connected to a source measure unit (SMU, Source Meter 2401, KEITHLEY Instruments, U.S.). Another SMU was used to apply a constant current (±1 mA cm⁻²), and the output voltage of the cell was measured. As a comparison, the Peltier effect of an aqueous electrolyte containing 400 mM K₃[Fe(CN)₆] and 400 mM K₄[Fe(CN)₆] was measured too.

Preparation of $V^{4+/5+}$ in the mixed solution of aqueous sulfate and acetonitrile and measurement of S_e

The composition of the electrolyte is shown below. The S_e was measured as described above. A mixed solvent of 100 mM sulfuric acid solution and MeCN: MeCN: H₂O = 2:1, 1:1, 1:0 (= v:v) VOSO₄: 3.3 mM (MeCN 67%), 5.0 mM, (MeCN 50%), 10 mM (MeCN 0%) V₂O₅: 3.3 mM (MeCN 67%), 5.0 mM, (MeCN 50%), 10 mM (MeCN 0%)

Miscellaneous measurements

Thermal conductivity was evaluated by a Hot Disk TPS 500 thermal conductivity meter (Kyoto Electronics, Japan) at ambient temperature. The electrical conductivity was measured with a conductivity meter (ES-71, Horiba, Japan).

	$S_e (mV K^{-1})$	$\sigma (mS cm^{-1})$	$\kappa (W m^{-1} K^{-1})$	T (K)	ZT	
Vanadium	-3.2	97.1	0.62	293	4.7×10^{-2}	
Ru(biim) ₃	-3.7	2.1	0.51	297	1.7×10^{-3}	
$[Fe(CN)_6]^{3-/4-}$	-1.4	190.3	0.55	298	2.1×10^{-2}	

Table S1. ZT value and related parameters of thermocells

Figure S1. Seebeck coefficient of $V^{4+/5+}$ TEC at various pH conditions in the mixed solution of acetonitrile and aqueous sulfonic acid (Pink: 1:2, Green: 1:1, Blue: 1:0).

Figure S2. Photograph of the apparatus of the thermocell measurement.