Supporting information

Nickel single atom catalyst supported on gallium nitride monolayer: First principles investigations on the decisive role of support on the electrocatalytic reduction of CO₂

Romana Khanam^a, Afshana Hassan^a, Zeeshan Nazir^a and Manzoor Ahmad Dar^{a*}

^{*a*} Department of Chemistry, Islamic University of Science and Technology,

Awantipora, Jammu and Kashmir-192122, India

Corresponding author: manzoor.dar@islamicuniversity.edu.in

Table of Contents

1. Table S1: Calculated dissolution potential values for Ni SACs supported on $g-C_2N$, GaN, Graphyne, Mo₂C and MoS₂ monolayers.

2. Fig. S1. Orbital projected density of states (oPDOS) of Ni SACs supported on different monolayers. Colour codes for the orbital contributions are given in the plots. Fermi-level is set to zero.

3. Fig. S2: Top views of CO₂ adsorbed on (a)Ni@C₂N (b) Ni@GaN (c) Ni@Graphyne (d) Ni@Mo₂C (e) Ni@MoS₂.

4. Fig. S3: Charge density difference plots of CO₂ adsorbed on (a) Ni@GaN (b)Ni@MoS₂ (C)Ni@Mo₂C catalysts.

5. Table S2: Calculated d-band center values for Ni SACs supported on different monolayers.

6. Fig. S4: Optimised geometries of various intermediates involved in the CO_2 reduction to C_1 products on (a) Ni@GaN (b) Ni@MoS₂ (c) Ni@Mo₂C catalysts.

7. Fig. S5: Potential energy fluctuations versus the simulation time for Ni SAC supported on GaN monolayer.

8. Table S3: Zero-point energy and entropic correction to free energy of the adsorbed species on a) Ni@GaN b) Ni@MoS₂ and c) Ni@Mo₂C catalysts.

Catalyst	$U^{o}_{diss} (eV)$	п	$E_f(eV)$	$\frac{E_f}{n}$ (eV)	$U_{diss}(eV)$
Ni@GaN	-0.23	2	-2.8	-1.4	1.17
Ni@MoS ₂	-0.23	2	-3.8	-1.9	1.67
Ni@Mo ₂ C	-0.23	2	-5	-2.5	2.27
Ni@C ₂ N	-0.23	2	-4.7	-2.35	2.12
Ni@Graphyne	-0.23	2	-5.4	-2.7	2.47

Table S1: Calculated dissolution potential values for Ni SACs supported on differentmonolayer supports.

Fig. S1. Spin polarized orbital projected density of states (oPDOS) of Ni SACs supported on different monolayers. Colour codes for the orbital contributions are given in the plots. Fermi-level is set to zero.

Fig. S2: Top views of CO₂ adsorbed on (a)Ni@C₂N (b) Ni@GaN (c) Ni@Graphyne (d) Ni@Mo₂C (e) Ni@MoS₂.

Fig. S3: Charge density difference plots of CO_2 adsorbed on (a) Ni@GaN (b)Ni@MoS₂ (C)Ni@Mo₂C catalysts. Yellow and cyan represents charge accumulation and depletion, respectively. The isosurface value was set to 0.002 e/bohr³.

Table S2: Calculated d-band center values for Ni SACs supported on different monolayer supports.

Catalyst	d-band center
Ni@GaN	-0.45
Ni@MoS ₂	-0.99
Ni@Mo ₂ C	-1.32
Ni@C ₂ N	-1.25
Ni@Graphyne	-1.00

Fig. S4: Screenshots of optimised geometries of various intermediates involved in the CO_2 conversion to HCOOH, CH_3OH , CH_4 on (a) Ni@GaN (b) Ni@MoS_2 (c) Ni@Mo_2C catalysts.

Fig. S5: Variation of energy versus the AIMD simulation time for Ni@GaN for 15 ps at 600K. The insets are the top views of snapshots of configurations at 5 and 12 ps.

Table S3: Energy, zero-point energy and entropic correction to free energy of the adsorbed species for Ni@GaN, Ni@MoS₂ and Ni@Mo₂C.

Ni@GaN					
Step	E (eV)	E _{ZPE} (eV)	S (eVK ⁻¹)	TS (eV)	G(eV)
*CO ₂	-316.857233	0.328690	0.000547	0.1630881	-316.691631
*COOH	-319.425272	0.000554	0.605944	0.1651751	-318.984503
*OCHO	-320.313724	0.000437	0.581102	0.13029155	-319.862914
*COOH	-319.321004	0.000609	0.59714	0.18157335	-318.905438
*CHOOH	-323.877534	0.000636	0.918475	0.1896234	-323.148683
*CO	-308.470316	0.000401	0.165283	0.11955815	-308.424591
*OCH ₂ OH	-327.152373	0.000851	1.227978	0.25372565	-326.17812
*CHO	-311.896459	0.000446	0.447363	0.1329749	-311.582071
*COH	-310.867704	0.000235	0.454007	0.07006525	-310.483762
*OCH ₂	-316.136323	0.000453	0.77019	0.13506195	-315.501195
*СНОН	-315.001092	0.000412	0.78224	0.1228378	-314.34169
*C	-297.317501	0.000177	0.051787	0.05277255	-297.318487
*OCH ₃	-320.144185	0.000837	1.073842	0.24955155	-319.319895
*OHCH ₂	-318.35843	0.000875	1.038613	0.26088125	-317.580698
*CH	-303.009759	0.000318	0.327085	0.0948117	-302.777486
*OHCH ₃	-323.917145	0.000644	1.419246	0.1920086	-322.689908
*CH ₂	-308.17012	0.000425	0.614902	0.12671375	-307.681932
*CH ₃	-312.901003	0.000571	0.910362	0.17024365	-312.160885
*CH ₄	-317.31996	0.00061	1.212199	0.1818715	-316.289632

Ni@MoS ₂						
Step	E(eV)	E _{ZPE} (eV)	S (eVK ⁻¹)	TS (eV)	G(eV)	
*CO ₂	-587.563637	0.302154	0.000618	0.18425670	-587.445740	
*COOH	-590.645482	0.603614	0.000599	0.17859185	-590.22046	
*OCHO	-590.841339	0.589185	0.000653	0.19469195	-590.446846	
*CO	-580.970742	0.205472	0.000519	0.15473985	-580.92001	
*OCHOH	-594.89086	0.920173	0.000851	0.25372565	-594.224412	
*COH	-581.907684	0.446143	0.000458	0.1365527	-581.598093	
*CHO	-583.261108	0.434148	0.000507	0.15116205	-582.978122	
*OCH ₂ OH	-597.856888	1.202081	0.000723	0.21556245	-596.870369	
*CHOH	-586.765332	0.786436	0.000255	0.07602825	-586.054924	
*OCH ₂	-587.601273	0.77883	0.000607	0.18097705	-587.00342	
*C	-568.827204	0.061959	0.000302	0.0900413	-568.855286	
*OCH ₃	-590.976745	1.050178	0.000527	0.15712505	-590.083692	
*CH ₂ OH	-590.710841	1.074021	0.000416	0.1240304	-589.760851	
*CH	-580.970877	0.203502	0.00031	0.0924265	-580.859801	
*CH ₃ OH	-595.531155	1.405878	0.000562	0.1675603	-594.292837	
*CH ₂	-579.170696	0.612425	0.00041	0.1222415	-578.680513	
*CH ₃	-584.136236	0.91042	0.0004	0.11926	-583.345076	
*CH ₄	-588.787671	1.208436	0.000538	0.1604047	-587.73964	

Ni@Mo ₂ C					
Step	E(eV)	E _{ZPE} (eV)	S (eVK ⁻¹)	TS (eV)	G(eV)
*CO ₂	-498.588954	0.309628	0.000395	0.11776925	-498.397095
*COOH	-502.97137	0.609714	0.000639	0.19051785	-502.552174
*OCHO	-503.724573	0.627761	0.000636	0.1896234	-503.286435
*COOH	-503.623063	0.526705	0.000724	0.2158606	-503.312218
*CO	-491.787177	0.193857	0.000542	0.1615973	-491.754917
*OCHOH	-505.933667	0.927132	0.000912	0.2719128	-505.278448
*OCH ₂ OH	-509.458255	1.204563	0.00079	0.2355385	-508.48923
*CHO	-494.564812	0.445339	0.000656	0.1955864	-494.31506
*COH	-493.459351	0.447735	0.000493	0.14698795	-493.158604
*OCH ₂	-498.431457	0.761415	0.000692	0.2063198	-497.876362
*CHOH	-497.843831	0.773156	0.00049	0.1460935	-497.216769
*C	-480.93785	0.067148	0.000287	0.08556905	-480.956271
*CH ₂ OH	-502.280252	1.067916	0.000413	0.12313595	-501.335472
*CH	-485.709716	0.308306	0.000428	0.1276082	-485.529018
*OCH ₃	-502.68526	1.065528	0.000665	0.19826975	-501.818002
*CH ₃ OH	-506.486166	1.398621	0.000583	0.17382145	-505.261366
*CH ₂	-490.655899	0.596963	0.000458	0.1365527	-490.195488
*CH ₃	-495.70907	0.899217	0.000271	0.08079865	-494.890652
*CH ₄	-499.737946	1.198221	0.000615	0.18336225	-498.723088