Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Analysis of charge trapping and long lived hole generation in SrTiO₃ photoanodes

Anna A. Wilson, ^a Thomas Shalvey, ^b Andreas Kafizas, ^{a,c} Asim Mumtaz, ^d James R. Durrant^{a,e}

^aDepartment of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 OBZ, UK, j.durrant@imperial.ac.uk

^bStephenson Institute for Renewable Energy, Department of Physics, University of Liverpool, Liverpool, L69 7ZF, UK

^cLondon Centre for Nanotechnology, Imperial College London, SW7 2AZ, UK ^dSchool of Physics, Electronics & Technology, University of York, Heslington, York, YO10 5DD, UK ^eSPECIFIC IKC, College of Engineering, Swansea University, Swansea, SA2 7AX, UK

Figure S1: 2D AFM image of the SrTiO₃ surface. The surface is relatively flat with a roughness factor of 1.1, calculated by dividing the actual surface area (27.3 μ m²) by the projected surface area (25.0 μ m²).

Figure S2: XRD pattern of the SrTiO₃ on FTO (F-doped SnO₂) investigated in this work, compared to standard XRD patterns of SrTiO₃ (ICDS collection no: 23076) and SnO₂ (ICDS collection no: 9163).

Figure S3: Steady-state spectra of $SrTiO_3/FTO$ compared to FTO, a) the absorbance, and b) Tauc plot giving an estimated band gap of 3.3-3.4 eV. It is noted that due to the large degree of noise this is an approximate value.

Figure S4: XPS of the valence band energy region of the SrTiO₃ photoanode.

Figure S5: Chopped light J-V response of $SrTiO_3$, measured using illumination from a 365 nm LED at approximately 1 sun illumination intensity (2.8 mW cm⁻²).

Figure S6: Measurements undertaken under an applied bias of 1.3 V_{RHE} and with increasing LED excitation intensities. a) Steady-state TPC measurements. b) Rate law analysis plot of the steady-state photocurrent (taken from the TPC in b)) measured simultaneously with the steady-state optical hole signal (taken from the PIAS in a)). The steady-state optical hole signal was converted into a surface h⁺ using the calculated extinction coefficient of 2200 M⁻¹ cm⁻¹. The gradient of two for the linear suggests a second order reaction with respect to the hole density.

Figure S7: Calculated reaction time constant, τ , of hole species in SrTiO₃ on FTO at a range of hole densities. Undertaken under an applied bias of 1.3 V_{RHE}.