Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2023

Fig.S1 Three-phase product yield distribution of depolymerization of CLS by Fe₂O₃-

La_{0.8}Sr_{0.2}FeO₃ at different temperatures

For the catalytic experiment, the other depolymerization temperatures of calcium lignosulfonate was analyzed in the conditional experiment of our previous studies, such as 210°C, 240°C, 270°C, and 300°C. It could be obviously seen in **Fig. S1**, when the depolymerization temperature was 300°C, the yield of liquid phase products was almost as large as that of 270°C, but considering the cost and energy consumption, the optimal depolymerization temperature of CLS was 270°C.

Fig. S2 Three-phase product yields for CLS depolymerization with various mass ratios of

During the catalytic depolymerization, the mass ratio of Fe₂O₃-La_{0.8}Sr_{0.2}FeO₃

catalyst to CLS was optimized with the value of 1:2, 1:1, 2:1, and 3:1. According to the results in **Fig. S2**, it could be seen that the liquid-phase product yield was 78.6% when $m(\text{CLS}):m(\text{Fe}_2\text{O}_3-\text{La}_{0.8}\text{Sr}_{0.2}\text{FeO}_3)$ 1:1, and 78.3% at 2:1. With the increasing of catalyst mass, the liquid-phase product yield at 3:1 decreased to 71.2%. From the perspective of catalytic efficiency and the production of more liquid products, the 2:1 value was selected to be the appropriate proportion in the following experiments.

Fig. S3 Particle size distribution (a), FT-IR spectra (b), and SEM images (c-f) of CLS

Fig. S4 Elemental analysis of calcium lignosulfonate

NO.	Ferric Salt	Precipitant	рН	Temperature	RC ^a /%
1	Fe(NO ₃) ₃	NaOH	9	160	51.15%
2	FeCl ₃	NH ₃ ·H ₂ O	5	160	49.83%
3	$Fe_2(SO_4)_3$	Na ₂ CO ₃	7	160	55.96%
4	Fe(NO ₃) ₃	Na ₂ CO ₃	5	180	44.23%
5	$Fe_2(SO_4)_3$	NH ₃ ·H ₂ O	9	180	38.11%
6	FeCl ₃	NaOH	7	180	44.86%
7	FeCl ₃	Na ₂ CO ₃	9	200	96.14%
8	Fe(NO ₃) ₃	NH ₃ ·H ₂ O	7	200	34.28%
9	$Fe_2(SO_4)_3$	NaOH	5	200	59.55%
k1	43.22%	51.85%	51.20%	52.31%	
k2	63.61%	40.74%	45.03%	42.40%	
k3	51.21%	70.55%	61.80%	63.32%	
R	20.39%	29.81%	16.77%	20.92%	

 Table S1
 The orthogonal results of Fe₂O₃ crystals

^a Relative crystallinity (RC) was calculated from Jade software.

Table S2The selectivity of liquid-phase products via the depolymerization of CLS

Туре		Selectivity of liquid-phase product/ <i>wt</i> .%						
Solvent system	S2	S2	S1	S2	S3	S2		
Catalyst	None	Fe ₂ O ₃	LSF-1.0	LSF-1.0	LSF-1.0	La _{0.8} Sr _{0.2} FeO ₃		
Ester	15.64	17.23	25.52	14.98	14.94	22.66		
Aromatic	0.70	5.01	5.72	6.35	4.75	3.84		
Guaiacol	8.79	8.63	10.94	20.76	17.75	15.82		
Syringin	15.60	20.34	13.24	27.19	24.37	13.86		
Phenol	13.98	9.04	13.72	11.46	10.33	7.08		
Ether	1.22	0.40	0.60	1.38	1.32	0.80		
Others	44.07	39.35	30.26	17.88	26.54	35.94		
Total selectivity of								
aryl oxygen-	40.29	43.42	44.22	67.14	58.52	41.40		
containing								
compounds								

Number	Wave length/cm ⁻¹	Functional group		
1	2991	C-H stretching vibration band		
2	1737	Non-conjugated carbonyl C=O stretching vibration band		
3	1641	Conjugated carbonyl C=O stretching vibration band		
4	1375	Phenolic hydroxyl -OH stretching vibration band		
5	1246	Guaiac-based and C=O stretching vibration band		
6	1107	Syringyl		
7	1049	C-H plane deformation vibrations on the aromatic rings		

 Table S3
 The functional groups of the liquid-phase product