# Supporting Information

## Modulating CsPbBr<sub>3</sub> nanocrystals encapsulated in PCN-224(Zr) for

boosting full-spectrum-driven CO<sub>2</sub> reduction: S-scheme transfer,

## photothermal-synergistic effect and DFT calculations

Yan-He Chen<sup>a</sup>, Jin-Qiu Shen<sup>a</sup>, Xiao-Lu Chen<sup>a</sup>, Luobing Tang<sup>b</sup>, Na Zhang<sup>b</sup>, Jian-Yong Zhang <sup>a,\*</sup>, and Zhen-Jiang Liu<sup>a,\*</sup>

<sup>a</sup> School of Chemical and Environmental Engineering, Shanghai Institute of Technology,

Shanghai 201418, P.R.China

<sup>b</sup> School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai

201418, P.R.China

\*Dr. Jian-Yong Zhang, E-mail: jianyong1106@163.com;

Prof. Zhen-Jiang Liu, E-mail:zjliu@sit.edu.cn

## List of Contents

## 1. Experimental

1.1 Characterization

**1.2 Photo-electrochemical measurements** 

1.3 Evaluation of photocatalytic CO<sub>2</sub> reduction

## 2. Supplementary Figures

**Fig.S1** The synthesis procedure and <sup>1</sup>HNMR spectra of as-synthesized  $H_6TCPP$  ligand.

Fig.S2 The PXRD patterns of observed and simulated PCN-224(Zr).

Fig.S3 The DTG curves of samples under air atmosphere.

**Fig.S4** The  $CO_2$  adsorption isotherms of CsPbBr<sub>3</sub> QDs and CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite at room temperature.

Fig.S5 The Tauc plots from UV-vis curves.

**Fig.S6** The EIS plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-x composite with or without irradiation (x=5, 15).

**Fig.S7** The LSV curves with or without light irradiation for CsPbBr<sub>3</sub>@PCN-224(Zr)-x photocatalysts (x=5 and 15).

Fig.S8 The overpotentials of five photocatalysts with or without irradiation.

**Fig.S9** The Tafel plots of PCN-224(Zr), CsPbBr<sub>3</sub> QDs, and CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite with or without irradiation.

**Fig.S10** The Tafel plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-x composite with or without irradiation (x=5, 15).

**Fig.S11** Real-time thermal images of the solid CsPbBr<sub>3</sub>@PCN-224(Zr)-5, and CsPbBr<sub>3</sub>@PCN-224(Zr)-15 samples under vis-NIR and UV irradiations, respectively.

Fig.S12 The EIS plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-10 at different temperatures.

Fig.S13 The photocatalytic  $CO_2RR$  performances of the five catalysts under vis-NIR irradiation for 4 h.

**Fig.S14** The photocatalytic  $CO_2RR$  performances of the five catalysts under UV light irradiation for 4 h.

Fig.S15 The comparison of the photocatalytic  $CO_2RR$  activity over different light irradiation.

**Fig.S16** The CsPbBr<sub>3</sub>@PCN-224(Zr)-10 photocatalyst characterization after four cyclic  $CO_2RR$  runs: XRD (a), and FT-IR (b).

Fig.S17 The current-potential curves of PCN-224(Zr) and CsPbBr $_3$  QDs under solar light irradiation.

Fig.S18 The electron transfer model under photothermal coupled with photocatalytical process.

**Fig.S19** The schematic view of photothermal effect on CsPbBr<sub>3</sub>@PCN-224(Zr)-10 photocatalyst.

**Fig.S20** The high-resolution XPS spectra of C 1s (a) and O 1s (b) over PCN-224(Zr) and CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite.

**Fig.S21** The in situ XPS spectra of Br 3d (a) and Cs 3d (b) over CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite with/without light irradiation.

Fig.S22 The proposed mechanism of photocatalytic CO<sub>2</sub>RR process.

## **3.** Supplementary Tables

**Table S1** The fitted internal resistance  $(R_s)$  and charge transfer resistance  $(R_{ct})$  from the Nyquist plots.

**Table S2** Summary of the photocatalytic  $CO_2RR$  performance under vis-NIR irradiation for 4 h over different photocatalysts in this paper.

Table S3 Comparison of the photocatalytic  $CO_2$  reduction over related photocatalysts.

Table S4 The fitted parameters of time-resolved PL curves of five photocatalysts.

## 4. References

#### 1. Experimental

#### 1.1 Characterization

The Fourier transform infrared (FT-IR) spectroscopy in the range of 500 cm<sup>-1</sup>-4000 cm<sup>-1</sup> was recorded on a Nicolet NEXUS 670 spectrophotometer. The crystal structure was determined by powder X-ray diffraction (PXRD) on a Rigaku D/Max-2500 diffractometer for a Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å). TGA was performed under flowing N<sub>2</sub> atmosphere using a Mettler Toledo TGA/SDTA851 instrument. The morphology was studied by scanning electron microscopy (SEM) (S-4800 II microscope, Hitachi), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) (FEI JEM-2100). X-ray photoelectron spectroscopy (XPS) was obtained on Physical Electronics PHI-5702 with Al K $\alpha$  excitation. The UV-vis diffuse reflectance spectra (UV-vis DRS) were obtained by Agilent Cary 5000 spectrophotometer. The steady-state photoluminescence (PL) spectra and TRPL spectra were studied on the Varian Cary Eclipse spectrometer (Hitachi F-7000). Transient surface photovoltage (TPV) spectra were conducted on a CEL-TPV2000 instrument (Beijing China Education Au-light Co., Ltd., China).

#### **1.2 Photo-electrochemical measurements**

The photo-electrochemical measurements (including photocurrent, linear sweep voltammetry, electrochemical impedance spectroscopy) were carried out on a CHI-660D electrochemical station (Chenhua Instrument, China) in a conventional standard three-electrode cell. An Ag/AgCl electrode was used as the reference electrode, the Pt wire as the counter electrode and the CsPbBr<sub>3</sub> QDs, PCN-224(Zr) or CsPbBr<sub>3</sub>@PCN-224-x composites were coated on FTO glass as the working electrode. A Xenon lamp (300 W, PLS-SXE300C, Beijing Perfect light Co. Ltd., China) equipped with different cut-off filter was utilized as simulated light source.

#### 1.3 Evaluation of photocatalytic CO<sub>2</sub> reduction

The photocatalytic  $CO_2$  reduction test was conducted on a photoreactor system (Beijing, Perfectlight Technology Co., Ltd.) as described in our previous study. Typically, as-prepared photocatalyst (4 mg) was dispersed in CH<sub>3</sub>CN (30 mL) with 100  $\mu$ L of DI water under continuous

magnetic stirring. The reaction temperature was maintained at 20 °C by a temperature-controlled circulating low-temperature water flow. Firstly, the mixture was degassed and bubbled with high-purity  $CO_2$  several times to remove the air inside and then was injected with high-purity  $CO_2$ . Then, the photoreactor was irradiated under a 300 W Xe lamp with different cutoff filter to simulate UV, vis-NIR and full-spectrum light, respectively. During the reaction process, the produced gaseous products were detected and quantified by gas chromatograph (GC-7890B, Agilent) equipped with a hydrogen flame ionization detector (FID) and a thermal conductivity detector (TCD). The cyclic experiments (4 h in each run) were carried out to evaluate the stability of the CsPbBr<sub>3</sub>@PCN-224(Zr)-x composite. Between the runs, the reactor was degassed and refilled with high-purity  $CO_2$ . All the experiments were repeated twice and the data used in the paper was the average value.

## 2. Supplementary Figures



Fig.S1 The synthesis procedure and <sup>1</sup>HNMR spectra of as-synthesized  $H_6TCPP$  ligand.



Fig.S2 The PXRD patterns of observed and simulated PCN-224(Zr).



Fig.S3 The DTG curves of samples under air atmosphere.



Fig.S4 The  $CO_2$  adsorption isotherms of CsPbBr<sub>3</sub> QDs and CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite at room temperature.



Fig.S5 The Tauc plots from UV-vis curves.



**Fig.S6** The EIS plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-x composite with or without irradiation (x=5, 15).



**Fig.S7** The LSV curves with or without light irradiation for CsPbBr<sub>3</sub>@PCN-224(Zr)x photocatalysts (x=5 and 15).



Fig.S8 The overpotentials of five photocatalysts with or without irradiation.



Fig.S9 The Tafel plots of PCN-224(Zr), CsPbBr<sub>3</sub> QDs, and CsPbBr<sub>3</sub>@PCN-224(Zr)-

10 composite with or without irradiation.



**Fig.S10** The Tafel plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-x composite with or without irradiation (x=5, 15).



**Fig.S11** Real-time thermal images of the solid CsPbBr<sub>3</sub>@PCN-224(Zr)-5, and CsPbBr<sub>3</sub>@PCN-224(Zr)-15 samples under vis-NIR and UV irradiations, respectively.



Fig.S12 The EIS plots of CsPbBr<sub>3</sub>@PCN-224(Zr)-10 at different temperatures.



**Fig.S13** The photocatalytic CO<sub>2</sub>RR performances of the five catalysts under vis-NIR irradiation for 4 h.



Fig.S14 The photocatalytic  $CO_2RR$  performances of the five catalysts under UV light irradiation for 4 h.



**Fig.S15** The comparison of the photocatalytic CO<sub>2</sub>RR activity over different light irradiation.



**Fig.S16** The CsPbBr<sub>3</sub>@PCN-224(Zr)-10 photocatalyst characterization after four cyclic  $CO_2RR$  runs: XRD (a), and FT-IR (b).



Fig.S17 The current-potential curves of PCN-224(Zr) and CsPbBr<sub>3</sub> under solar light irradiation.



Fig.S18 The electron transfer model under photothermal coupled with photocatalytical process.



**Fig.S19** The schematic view of photothermal effect on CsPbBr<sub>3</sub>@PCN-224(Zr)-10 photocatalyst.



**Fig.S20** The high-resolution XPS spectra of C 1s (a) and O 1s (b) over PCN-224(Zr) and CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite.



Fig.S21 The in situ XPS spectra of Br 3d (a) and Cs 3d (b) over CsPbBr<sub>3</sub>@PCN-224(Zr)-10 composite with/without light irradiation.



Fig.S22 The proposed mechanism of photocatalytic CO<sub>2</sub>RR process.

# **3.** Supplementary Tables

Table S1. The fitted internal resistance (Rs) and charge transfer resistance (Rct) from

| the Nyquist plots.                          |                     |             |                           |                           |                           |  |  |
|---------------------------------------------|---------------------|-------------|---------------------------|---------------------------|---------------------------|--|--|
| Catalysts                                   | CsPbBr <sub>3</sub> | PCN-        | CsPbBr <sub>3</sub> @PCN- | CsPbBr <sub>3</sub> @PCN- | CsPbBr <sub>3</sub> @PCN- |  |  |
|                                             | QDs                 | 224(Zr)     | 224(Zr)-5                 | 224(Zr)-10                | 224(Zr)-15                |  |  |
|                                             | light dark          | light dark  | light dark                | light dark                | light dark                |  |  |
| $\mathbf{R}_{\mathbf{s}}\left(\Omega ight)$ | 361.7 394.4         | 116.1 299.6 | 106.9 203.3               | 98.5 136.2                | 130.3 228.4               |  |  |
| $\mathbf{R}_{\mathbf{ct}}(\Omega)$          | 3074 3590           | 1124 1616   | 324 838.9                 | 278.2 791.4               | 325.8 923.3               |  |  |

| Table    | S2.    | Summary      | of   | the  | photocatalytic   | $CO_2RR$   | performance | under | vis-NIR |
|----------|--------|--------------|------|------|------------------|------------|-------------|-------|---------|
| irradiat | tion f | for 4 h over | diff | eren | t photocatalysts | in this pa | aper.       |       |         |

| Photocatalysts          | <b>CO (4 h)</b><br>(µmol g <sup>-1</sup> ) | <b>CH<sub>4</sub> (4 h)</b><br>(μmol g <sup>-1</sup> ) | CO<br>efficiency<br>(µmol g <sup>-1</sup> h <sup>-1</sup> ) | CH <sub>4</sub><br>efficiency<br>(μmol g <sup>-1</sup> h <sup>-1</sup> ) | $\frac{\mathbf{R}_{electron}}{(\mu mol \ g^{-1} \ h^{-1})}$ |
|-------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|
| CsPbBr <sub>3</sub> QDs | 60.1                                       | 5.0                                                    | 15.03                                                       | 1.25                                                                     | 40.06                                                       |
| PCN-224(Zr)             | 150.6                                      | 13.9                                                   | 37.65                                                       | 3.475                                                                    | 103.1                                                       |

| $CsPbBr_3@PCN-$<br>224( $Tr$ )-5 | 200.5 | 8.8  | 50.125 | 2.2   | 117.85 |
|----------------------------------|-------|------|--------|-------|--------|
| $CsPbBr_3@PCN-$                  | 295.4 | 15.2 | 73.85  | 3.9   | 178.9  |
| $CsPbBr_3@PCN-$                  | 181.1 | 13.3 | 45.275 | 3.325 | 117.15 |
| 224(Zr)-15                       |       |      |        |       |        |

Table S3 Comparison of the photocatalytic CO<sub>2</sub> reduction over related photocatalysts.

| Photocatalyst                                 | Condition                            | Light           | Product<br>(µmol g <sup>-1</sup> ) |                 | $\begin{array}{l} R_{electron} \ (\mu mol \\ g^{\text{-1}}  h^{\text{-1}})^a \end{array}$ | Ref.   |
|-----------------------------------------------|--------------------------------------|-----------------|------------------------------------|-----------------|-------------------------------------------------------------------------------------------|--------|
|                                               |                                      |                 | СО                                 | CH <sub>4</sub> | -                                                                                         |        |
| M@C-Br                                        | CO <sub>2</sub> /H <sub>2</sub> O, 4 | 300 W Xe lamp   | 106.3                              | 15.51           | 85.0                                                                                      | 2023   |
| -                                             | h                                    | (320-780 nm)    | 5                                  |                 |                                                                                           |        |
| CsPbBr <sub>3</sub> /UiO-66(NH <sub>2</sub> ) | EA/H <sub>2</sub> O,                 | 300 W Xe lamp   | 98.57                              | 3.08            | 18.48                                                                                     | 1287   |
|                                               | 12h                                  | (420-800 nm)    |                                    |                 |                                                                                           |        |
| 3-RhB@Zr-MOF                                  | H <sub>2</sub> O, 4 h                | 300 W Xe lamp   | 10.27                              | -               | 5.14                                                                                      | 334    |
|                                               |                                      | (400-780 nm)    |                                    |                 |                                                                                           |        |
| Co <sub>2%</sub> @CsPbBr <sub>3</sub> @       | H <sub>2</sub> O, 20 h               | 300 W Xe lamp   | 239                                | 7.8             | 27.02                                                                                     | 4769   |
| _Cs <sub>4</sub> PbBr <sub>6</sub>            |                                      | (400-780 nm)    |                                    |                 |                                                                                           |        |
| CTU/0.6TiO <sub>2</sub>                       | H <sub>2</sub> O, 1 h                | 300 W Xe lamp   | 31.32                              | 0.148           | 63.82                                                                                     | 926    |
|                                               |                                      | (>300 nm)       |                                    |                 |                                                                                           |        |
| WO <sub>3</sub> /CsPbBr <sub>3</sub> /ZIF-67  | $CO_2/H_2O, 3$                       | 150 W Xe lamp ( | 99.38                              | 1.49            | 70.22                                                                                     | 1550   |
|                                               | h                                    | >300 nm)        |                                    |                 |                                                                                           |        |
| UiO-68-OCH <sub>3</sub>                       | TEOA, 50                             | 300 W Xe lamp   | 118.1                              | -               | 19.69                                                                                     | 8221   |
|                                               | °C, 6 h                              | (400-780 nm)    |                                    |                 |                                                                                           |        |
| CsPbBr <sub>3</sub> @ZIF-67                   | $CO_2/H_2O, 3$                       | 100 W Xe lamp   | 2.30                               | 10.54           | 29.63                                                                                     | 2656   |
|                                               | h                                    | (400-780 nm)    |                                    |                 |                                                                                           |        |
| NMF/CPB-NWS                                   | $EA/H_2O$ , 3                        | 300 W Xe lamp   | 320.4                              | -               | 160.2                                                                                     | 120411 |
|                                               | h                                    | (420-780 nm)    |                                    |                 |                                                                                           |        |
| Zr-MOF@TP-TA                                  | $CO_2/H_2O,8$                        | 300 W Xe lamp   | 2.504                              | 0.2             | 0.83                                                                                      | 137011 |
|                                               | h                                    | (320-780 nm)    |                                    |                 |                                                                                           |        |
| $MAPbI_3@PCN-221(Fe_{0.2})$                   | EA/H <sub>2</sub> O, 25              | 300 W Xe lamp   | 104                                | 325             | 112.3                                                                                     | 9491   |
|                                               | h                                    | (400-800 nm)    |                                    |                 |                                                                                           |        |
| CPB@Cu-TCPP-20                                | CH <sub>3</sub> CN, 4 h              | 300 W Xe lamp   | 287.1                              | 3.25            | 150.1                                                                                     | 3192   |
|                                               |                                      | (420-800 nm)    |                                    |                 |                                                                                           |        |
| CsPbBr <sub>3</sub> @PCN-224(Zr)-             | CH <sub>3</sub> CN, 4 h              | 300 W Xe lamp   | 295.4                              | 15.3            | 178.2                                                                                     | This   |
| _10                                           |                                      | (420-800 nm)    |                                    |                 |                                                                                           | work   |

 ${}^{a}R_{electron}$  is the rate of total electron consumption for the reduced product.

| Photocatalysts                      | $\tau_1$ [ns] | $\tau_2[ns]$ | $\tau_{ave}$ [ns] |
|-------------------------------------|---------------|--------------|-------------------|
| CsPbBr <sub>3</sub> QDs             | 2.1           | 16.47        | 15.9              |
| PCN-224(Zr)                         | 7.52          | 6.03         | 6.03              |
| CsPbBr <sub>3</sub> @PCN-224(Zr)-5  | 1.20          | 5.37         | 5.37              |
| CsPbBr <sub>3</sub> @PCN-224(Zr)-10 | 0.64          | 1.56         | 2.18              |
| CsPbBr <sub>3</sub> @PCN-224(Zr)-15 | 3.92          | 0.51         | 3.75              |

## 4. References

[1] J. Wang, Z. Dai, L. Wang, D. Zhang, Y. Wang, J. Li, F. Zhou, J. Huang, A Z-Scheme heterojunction of porphyrin-based core-shell Zr-MOF@Pro-COF-Br hybrid materials for efficient visible-light-driven CO<sub>2</sub> reduction, J. Mater. Chem. A, 11 (2023) 2023-2030.

[2] S. Wan, M. Ou, Q. Zhong, X. Wang, Perovskite-type CsPbBr<sub>3</sub> quantum dots/UiO-66(NH<sub>2</sub>) nanojunction as efficient visible-light-driven photocatalyst for CO<sub>2</sub> reduction, Chem. Eng. J., 358 (2019) 1287-1295.

[3] O.-Y. Yang, X.-J. Gao, G.-D. Qi, Y. Wang, W.-W. Dong, Z.-F. Tian, J. Zhao, D.-S. Li, Q. Zhang, Dye-Anchoring Strategy with a Metal–Organic Framework for a Highly Efficient Visible-Light-Driven Photocatalytic CO<sub>2</sub> Reduction through the Solid–Gas Mode, ACS Appl. Energy Mater., 6(1) (2022) 334-341.

[4] Y.-F. Mu, W. Zhang, X.-X. Guo, G.-X. Dong, M. Zhang, T.-B. Lu, Water-Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visible-Light-Driven  $CO_2$  Reduction in Pure Water, ChemSusChem, 12(21) (2019) 4769-4774.

[5] L. Wang, P. Jin, S. Duan, H. She, J. Huang, Q. Wang, In-situ incorporation of Copper (II) porphyrin functionalized zirconium MOF and  $TiO_2$  for efficient photocatalytic CO<sub>2</sub> reduction, Sci. Bull., 64(13) (2019) 926-933.

[6] Y.-J. Dong, Y. Jiang, J.-F. Liao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Construction of a ternary WO<sub>3</sub>/CsPbBr<sub>3</sub>/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction, Sci. Chin. Mater., 65(6) (2022) 1550-1559.

[7] Y.-P. Wei, Y. Liu, F. Guo, X.-Y. Dao, W.-Y. Sun, Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide, Dalton Trans., 2019, 48(23), 8221-8226.

[8] Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, Core@Shell CsPbBr<sub>3</sub>@Zeolitic Imidazolate Framework Nanocomposite for

Efficient Photocatalytic CO<sub>2</sub> Reduction, ACS Energy Lett. 3 (2018) 2656–2662.

[9] Y. Xi, X. Zhang, Y. Shen, W. Dong, Z. Fan, K. Wang, S. Zhong, S. Bai, Aspect ratio dependent photocatalytic enhancement of CsPbBr<sub>3</sub> in CO<sub>2</sub> reduction with two dimensional metal organic framework as a cocatalyst, Appl. Catal. B: Environ. 297 (2021) 120411.

[10] L. Wang, J. Mao, G. Huang, Y. Zhang, J. Huang, H. She, C. Liu, H. Liu, Q. Wang, Configuration of hetero-framework via integrating MOF and triazinecontaining COF for charge-transfer promotion in photocatalytic  $CO_2$  reduction, Chem. Eng. J., 446 (2022) 137011.

[11] L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Encapsulating Perovskite Quantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO<sub>2</sub> Reduction, Angew. Chem. Int. Ed. 55(28), 9491-9495.

[12] N. Zhang, J.-J. Li, Y. Li, H. Wang, J.-Y. Zhang, Y. Liu, Y.-Z. Fang, Z. Liu and M. Zhou, Visible-light driven boosting electron-hole separation in CsPbBr<sub>3</sub> QDs@2D Cu-TCPP heterojunction and the efficient photoreduction of CO<sub>2</sub>, J. Colloid Interface

Sci., 608 (2022) 3192-3203.