- 1 Supporting Information
- 2
- 3 Solar-light Driven Simultaneous Hypochlorous acid and Hydrogen
- 4 Generation over RhCrO<sub>x</sub>-loaded SrTiO<sub>3</sub> Photocatalyst Systems
- 5
- 6 Sayuri Okunaka <sup>a,b\*</sup>, Toshio Nakamura <sup>a</sup>, Takeshi Ikeda <sup>a</sup>, Kohei Tsuruda <sup>a</sup> and Hiromasa
- 7 Tokudome *a*\*
- 8
- 9 aResearch Institute, TOTO LTD., 2-8-1 Honson, Chigasaki, Kanagawa. 253-8577, Japan
- 10 <sup>b</sup>Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City
- 11 University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, 158-8557, Japan
- 12
- 13 E-mail: okunakas@tcu.co.jp, hiromasa.tokudome@jp.toto.com

## 15 Experimental

## 16 Characterization

SrTiO<sub>3</sub>:Al particles loaded with/without co-catalyst were characterized by using an X-17 ray diffractometer (XRD, PANalytical, X'Pert Pro, rotating anode diffractometer, 45 kV, 18 40 mA) with Cu K $\alpha$  radiation ( $\lambda_{Ka}$  = 1.5406 Å), a UV–vis-NIR spectrometer equipped 19 with an integrating sphere (UV-vis. DRS, Jasco, V-670), and a scanning electron 20 microscope (SEM, HITACHI, SU-8220). X-ray photoelectron spectroscopy (XPS) was 21 conducted using a monochromatic Mg<sub>Ka</sub> source (hv = 1253.6 eV) with an acceleration 22 voltage of 8 kV and a current of 10 mA (JEOL, JPS-9000). The analysis chamber pressure 23 was on the order of 10<sup>-6</sup> Pa. The binding energies were calibrated using the C1s peak 24 25 (284.8 eV) as a reference.

26

## 27 Photocatalytic reaction

The photocatalytic HClO and/or H<sub>2</sub> production on SrTiO<sub>3</sub>:Al particles loaded with/without co-catalyst was carried out using a screw-top test tube. The temperature of the reaction system was controlled to keep at 25 °C using a water bath. the SrTiO<sub>3</sub>:Al particles (10 mg) were added to an aqueous NaCl solution (5 mL), and the light was irradiated from the side of the reactor tube by a simulated solar light (HAL-320, Asahi Spectra Co., Ltd.), where the light intensity was adjusted at 100 mW cm<sup>-2</sup> (AM1.5G). In the case of the photocatalytic HClO and/or H<sub>2</sub> production on the SrTiO<sub>3</sub>:Al panels

loaded with/without co-catalyst, the reactions were carried out in a Pyrex-made reaction
vessel, in which the panel was horizontally fixed in 10 mL of aqueous NaCl solution,
connected to a closed gas-circulating system.

The amounts of HClO produced were analyzed by using the *N*, *N*-diethyl-*p*phenylenediamine (DPD) method. The amounts of  $H_2$  produced were analyzed and quantified by using an on-line gas chromatograph (GL Science; GC-3200, TCD, Ar carrier, MS-5A column).

- 42
- 43

## **Results**



**Figure S1.** (a) UV-vis DRS spectra of the  $SrTiO_3$ :Al photocatalysts with/without co-47 catalyst (RhO<sub>x</sub>, CrO<sub>x</sub>, and RhCrO<sub>x</sub>). (b) The y-axis is the magnified. Loading amount of 48 co-catalyst: 0.1 wt%





- $CrO_x$ , and RhCrO<sub>x</sub>). Loading amount of co-catalyst: 0.1 wt%



**Figure S3.** SEM image of  $RhCrO_x/SrTiO_3$ : Al photocatalyst prepared *via* flux synthesis.



60 Figure S4. XPS spectra of the SrTiO<sub>3</sub>:Al photocatalysts with/without co-catalyst

```
61 (RhCrO<sub>x</sub>, PtCrO<sub>x</sub>, and RuCrO<sub>x</sub>). Loading amount of co-catalyst: 0.1 wt%
```



**Figure S5.** XRD patterns of the SrTiO<sub>3</sub>:Al photocatalysts with/without co-catalyst 65 (RhCrO<sub>x</sub>, PtCrO<sub>x</sub>, and RuCrO<sub>x</sub>). Loading amount of co-catalyst: 0.1 wt%



**Figure S6.** SEM images of  $SrTiO_3$ : Al with co-catalyst (RhCrO<sub>x</sub>, PtCrO<sub>x</sub>, and RuCrO<sub>x</sub>).

70 Loading amount of co-catalyst: 0.1 wt%



**Figure S7.** XPS spectra of the bare  $SrTiO_3$ : Al photocatalyst and those with loading  $RhO_x$ ,

 $CrO_x$ , RhCrO<sub>x</sub> cocatalyst.





```
and RhO_x, CrO_x, and RhCrO_x loaded ones in the aqueous NaCl solution that HClO (0.05
```

- 82 mmol) was initially added.
- 83 Catalyst, 0.01 g; reactant solution, 5 mL of 1M aqueous NaCl solution; dark condition.
- 84 Reaction time; 4 h



**Figure S9.** (a) XRD patterns, (b) XPS spectra, and (c) SEM images of the 88 RhCrO<sub>x</sub>/SrTiO<sub>3</sub>:Al photocatalysts before/after the reaction.



Figure S10. Recyclability of RhCrO<sub>x</sub>/SrTiO<sub>3</sub>:Al photocatalyst in the 1 M of aqueous
NaCl solution under solar-light irradiation. Catalyst, 0.01 g; reactant solution, 5 mL of
aqueous NaCl solution; light source, simulated solar light (AM 1.5G); Irradiation time,
1h.



**Figure S11.** XRD patterns of the  $RhCrO_x/SrTiO_3$ : Al particle and film.



102 **Figure S12.** Photograph of (a)  $H_2$  production over the RhCrO<sub>x</sub>/SrTiO<sub>3</sub>:Al film in an 103 aqueous NaCl solution under UV-light irradiation and (b) before/after the reaction 104 solution to which DPD reagent was added.

105

106



**Figure S13.** The H<sub>2</sub> and HClO production amounts on the (a) RhCrO<sub>x</sub>/SrTiO<sub>3</sub>:Al film and (b) particles. A  $2.5 \times 2.5$  cm sheet in which contains 10 mg of RhCrO<sub>x</sub>/SrTiO<sub>3</sub>:Al photocatalyst, and 10 mg of particles were used for the reaction. Reaction conditions: cocatalyst, RhCrO<sub>x</sub>; solution, 10 mL of NaCl aq.; light source, simulated solar light (AM1.5G).