Graphene and graphene-cellulose nanocrystals composite films for sustainable anodes in biophotovoltaic devices

Sara Lund^{*,a,b,c}, Laura T. Wey^{*,c}, Jouko Peltonen^a, Johan Bobacka^{a,b}, Rose-Marie-Latonen^{†,a,b}, Yagut Allahverdiyeva^{†,c}

^a Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henriksgatan 2, 20500 Turku (Åbo), Finland

^b Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Henriksgatan 2, 20500 Turku (Åbo), Finland

^c Photomicrobes Research Group, Molecular Plant Biology unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland.

*These authors contributed equally: Sara Lund, Laura T. Wey

⁺Corresponding authors: allahve@utu.fi, rose-marie.latonen@abo.fi

Supplementary Information

Table S1 A comparison of graphene-based electrodes in three-electrode biophotovoltaic systems. PSII = photosystem II, 2,6-dichloro-1,4-benzoquinone = DCBQ, IO = inverse opal, RGO = reduced graphene oxide, ITO = indium tin oxide, PEI = polyethyleneimine, TM = thylakoid membrane, GC = glassy carbon, PAH = polyallylamine hydrochloride, PEN = polyethylene naphthalate, CNC = cellulose nanocrystals, * = co-assembled with the biocatalyst. The current at 0.6 V vs SHE using the graphene anode was recorded during the stepped chronoamperometry measurement (Fig. S5) which was not done with the graphene-CNC electrode.

Biocatalyst	Artificial electron mediator	Electrode material	Electrode structure	Reducing agents	Applied Bias Potential (V vs SHE)	Photocurrent (μA cm ⁻²)	Year	Ref.
PSII	DCBQ	IO-RGO on ITO	3D	Reduced by annealing at 500 °C	0.5	0.44 ± 0.02 (no artificial mediator) 4.19 ± 0.01 (artificial mediator)	2019	1
PSII	No	PEI-RGO* on ITO	Layered	Hydrazine	0.49	0.0372	2015	2
тм	No	Aminoaryl func. RGO on GC	Porous/3D, planar microstruct ure	Electroredu ction	0.6	5.24 ± 0.50	2018	3
тм	1.5 mM K₄[Fe(CN) ₆]	GO / RGO* on ITO	Flat	PAH, hydrazine	0.44	21.37 ± 1.11 / 18.95 ± 0.54	2018	4
ТМ	10 mM K₃[Fe(CN) ₆]	GO* on ITO-PEN	Flat	Not reduced	0.64	3.92	2019	5
Synechocystis	1.0 mM K ₃ [Fe(CN) ₆]	Graphene	Rough	No	0.70 (Fig. 4B)	2.17 ± 0.74	2023	This work
Synechocystis	1.0 mM K ₃ [Fe(CN) ₆]	Graphene-CNC (thick)	Rough	No	0.70 (Fig. 4B)	1.11 ± 0.60	2023	This work
Synechocystis	1.0 mM K ₃ [Fe(CN) ₆]	Graphene-CNC (thin)	Rough	No	0.70 (Fig. 4B)	0.60 ± 0.12	2023	This work
Synechocystis	No	Graphene	Rough	No	0.60 (Fig. S5)	0.058 ± 0.018	2023	This work

Table S2 A comparison of graphene-based electrodes in two-electrode biophotovoltaic systems. RGO = reduced graphene oxide, TiO_2 = titanium dioxide, CC = carbon cloth.

Biocatalyst	Artificial electron mediator	Anode material	Anode structure	Max. power output (mW m²)	Year	Ref.
Chlorella sp. (UMACC 313)	NA	RGO on glass	Porous	0.27 (dark background not subtracted)	2014	6
Chlorella sp. (UMACC 313)	NA	RGO on glass	Rough	6.935 x 10 ⁸ (dark background not subtracted)	2017	7
Synechococcus elongatus	NA	RGO on glass	NA	0.538 ± 0.014	2018	8
Chlorella vulgaris	No	TiO ₂ /RGO on CC	Fibrous	34.66 ± 1.3	2018	9

Table S3 Surface roughness parameters of graphene and graphene-CNC films determined from 5.0 μ m × 5.0 μ m AFM images. Data presented as mean ± standard deviation (n = 3 films, 3 images /per film). The parameters are Root-mean-square (RMS)-roughness (S_q), ten-point height (S_{10z}), skewness (S_{sk}), kurtosis (S_{ku}), density of summits (S_{ds}) and effective surface area (S_{dr}).

Film material	S _q (nm)	S _{10z} (nm)	S _{sk}	S _{ku}	S _{ds} (μm ⁻²)	S _{dr} (%)
Graphene	44.1 ± 13.4	238 ± 76	0.2 ± 0.3	3.3 ± 0.4	29.0 ± 6.7	1.6 ± 1.3
Graphene-CNC	40.8 ± 3.2	334 ± 21	-0.1 ± 0.2	3.5 ± 0.1	163.5 ± 21.3	16.6 ± 0.7

Table S4 The anodic and cathodic peak currents ($I_{p,a}$ and $I_{p,c}$) and potentials ($E_{p,a}$ and $E_{p,c}$), and the peak separation (ΔE_p) for different replicates of graphene and graphene-CNC electrodes spray-coated on non-conductive glass measured in 1.0 M KNO₃ electrolyte with either 0.5 mM K₃[Fe(CN)₆] and 0.5 mM K₄[Fe(CN)]₆ or 1.0 mM [Ru(NH₃)₆]Cl₃ with a scan rate of 50 mV s⁻¹. Dispersion volumes of 2.5 ml and 2.0 ml were used for spray-coating the thick and thin electrodes, respectively.

Electrode	l _{p,a} (mA cm ⁻²)	Е _{р,а} (V)	l _{p,c} (mA cm⁻²)	E _{p,c} (V)	ΔΕ _ρ (V)	Fig. No
Graphene with Fe(CN) ₆ ^{3-/4-}	0.13	0.33	-0.15	0.24	0.090	2B
Graphene-CNC with Fe(CN) ₆ ^{3-/4-}	0.13	0.40	-0.12	0.19	0.21	2B
ITO with Fe(CN) ₆ ^{3-/4-}	0.12	0.32	-0.12	0.23	0.091	2B
Graphene with Ru(NH ₃) ₆ ³⁺	0.14	-0.14	-0.24	-0.24	0.10	S2
Graphene-CNC with $Ru(NH_3)_6^{3+}$	0.11	-0.051	-0.086	-0.30	0.25	S2
Graphene-CNC (thin) with $Fe(CN)_6^{3-/4-}$	0.11	0.38	-0.11	0.185	0.20	S6
Graphene-CNC (thick) with Fe(CN) ₆ ^{3-/4-}	0.11	0.37	-0.093	0.200	0.18	S6
Graphene (thin) with Fe(CN) ₆ ^{3-/4-}	0.17	0.32	-0.17	0.23	0.090	S6
Graphene (thick) with Fe(CN) ₆ ^{3-/4-}	0.13	0.33	-0.15	0.23	0.095	S6

Table S5 The average thicknesses, conductivities and sheet resistance ranges of graphene and graphene-CNC films. Thicknesses and conductivities presented as mean \pm standard deviation (graphene and thick graphene-CNC: n = 4, thin graphene-CNC: n = 3). The sheet resistances are calculated for the same films and given as a range from the smallest to the largest value.

Film type	Film thickness (nm)	Film conductivity (S m ⁻¹)	Sheet resistance (Ω/sq)
Graphene	760 ± 100	8 900 ± 1 300	130 - 170
Graphene-CNC (thick)	1590 ± 460	1 500 ± 400	270 - 790
Graphene-CNC (thin)	880 ± 140	Not measured	

Fig. S1 Top-view topographical atomic force micrograms of graphene (on the left) and graphene-CNC (on the right) films on glass. Scale bar 1 μ m indicates x-y plane; whole image is 5.0 μ m x 5.0 μ m; colour scale bar on right indicates z-height. The coloured areas in the images boundary cavities.

ig. S2 Cyclic voltammograms of the graphene (black) and graphene-CNC (green) films on non-conductive glass in 1.0 mM [Ru(NH₃)₆]Cl₃ and 1.0 M KNO₃ as the background electrolyte. Scan rate 50 mV s^{-1} . The last cycle of five cycles is shown. The scanning direction which applies for all CVs is indicated with an arrow in Fig. 2A. The starting potential was 0.0 V.

ig. S3 The anodic and the cathodic peak currents as a function of the square roots of the scan rates of graphene (on the left) and graphene-CNC (on the right) films in 0.5 mM K_3 [Fe(CN)₆], 0.5 mM K_4 [Fe(CN)₆] and 1.0 M KNO₃ measured with scan rates of 5, 10, 20, 50 and 100 mV s^{-1} .

Fig. S4 Photos of graphene and graphene-CNC films on glass substrate after cyclic voltammetry experiments were performed in BG11 (pH 8.2) electrolyte and photoelectrochemical apparatus was disassembled.

Fig. S5 Photocharge density of cyanobacterial cells on graphene anodes at different applied potentials (V vs Ag/AgCl) in BG11 (pH 8.2) electrolyte with 60 nmol Chl a loading and 17 h biofilm formation. The data was recorded under 5/5 min light/dark cycles with light intensity 100 μ mol_{photons} m⁻² s⁻¹ and wavelength 660 nm. Photocharge was calculated as area under the current-time trace in light minus the area in dark, each for 5 min. All photocharges in this study are calculated this way. Data presented as the mean of four biological replicates and the error bars are the standard error of the mean.

ig. S6 Cyclic voltammograms of the graphene (on the left) and graphene-CNC (on the right) films with different thicknesses on non-conductive glass in 0.5 mM K_3 [Fe(CN)₆] and 0.5 mM K_4 [Fe(CN)₆] with 1.0 M KNO₃ as the background electrolyte using a scan rate of 50 mV s^{-1} . The films of different thicknesses were prepared from the same dispersions using either 2.5 (solid line) or 2.0 ml (dashed line) dispersion volume in spray-coating. The scanning direction which applies for all CVs is indicated with an arrow in Fig. 2A. The starting potential was 0.0 V.

Fig. S7 Photocharge density of cyanobacterial cells on graphene anodes as a function of relative humidity (RH) with 60 nmol_{Chl a} loading and 17 h biofilm formation. The data was recorded under 5/5 min light/dark cycles with light intensity 100 μ mol_{photons} m⁻² s⁻¹ and wavelength 660 nm. The dark grey rectangular lines represent the data points where the humidity is estimated to be 40-50% RH. The black squares represent the measured average humidity during the 17 h biofilm incubation.

ig. S8 Chlorophyll quantification of cyanobacterial cells suspended in the electrolyte after photoelectrochemical experiments after 2 and 17 h biofilm incubation times. Data presented as mean \pm standard error of the mean (n = 4 for graphene 2 h, n = 3 for graphene 17 h, n = 2 for G-CNC 2 h and n = 6 for G-CNC 17 h), statistical significance by t-test P \leq 0.001 denoted by ***.

ig. S9 Absorbance determined with UV-Vis spectroscopy as a function of Chl *a* concentration in 90 % (v/v) MeOH solution containing also 10% (v/v) electrolyte of BG11 with ferricyanide and DCBQ artificial electron mediator. The extinction coefficient is the slope of the calibration curve.

Fig. S10 Representative UV-vis absorption spectra of graphene and graphene-CNC dispersions showing the typical peak at ca 270 nm corresponding to the π - π * transition of aromatic C-C bonds in graphene.

References

- 1. X. Fang, K. P. Sokol, N. Heidary, T. A. Kandiel, J. Z. Zhang and E. Reisner, *Nano Lett.*, 2019, **19**, 1844–1850.
- 2. P. Cai, X. Feng, J. Fei, G. Li, J. Li, J. Huang and J. Li, *Nanoscale*, 2015, 7, 10908–10911.
- 3. G. Pankratova, D. Pankratov, C. Di Bari, A. Goñi-Urtiaga, M. D. Toscano, Q. Chi, M. Pita, L. Gorton and A. L. De Lacey, ACS Appl. Energy Mater., 2018, 1, 319–323.
- 4. P. Cai, G. Li, Y. Yang, X. Su and Z. Zhang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2018, **555**, 37–42.
- 5. H. Shin, T. Kim, I. Seo, S. Kim, Y. J. Kim, H. Hong, Y. Park, H. M. Jeong, K. Kim and W. Ryu, *Applied Surface Science*, 2019, **481**, 1–9.
- 6. F.-L. Ng, M. M. Jaafar, S.-M. Phang, Z. Chan, N. A. Salleh, S. Z. Azmi, K. Yunus, A. C. Fisher and V. Periasamy, Scientific Reports, 2014, 4, 7562.
- 7. S. A. Ibrahim, M. M. Jaafar, F.-L. Ng, S.-M. Phang, G. G. Kumar, W. H. A. Majid and V. Periasamy, *Appl. Phys. A*, 2018, **124**, 59.
- 8. F.-L. Ng, S.-M. Phang, V. Periasamy, J. Beardall, K. Yunus and A. C. Fisher, *J Appl Phycol*, 2018, **30**, 2981–2988.
- 9. N. Senthilkumar, S. Sheet, Y. Sathishkumar, Y. S. Lee, S.-M. Phang, V. Periasamy and G. Gnana kumar, *Appl. Phys. A*, 2018, **124**, 769.