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Figure S1. EDX spectra of the nanoparticles on a silicon wafer.

USED EQUATIONS:

The CO surface area ECSAco in cm? was determined using equation:

ECSACO = Qco (S 1)

monolayer of absorbed CO
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where Qco is the CO stripping charge and the monolayer of absorbed CO charge are 420 and 376 puC-s*for
platinum and iridium, respectively.

The specific surface area (SAors) and mass activity (MAogrr) Were obtained by normalization of ji as
follows:

SAORR = Jk (S 2)

ECSApupa-metal loading

MApgg = e (s3)

metal loading

The number of electrons involved in the reactions and the percentage of H,0, produced are
calculated from equations S5 and S6, respectively.
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Figure S2. STEM-EDX elemental mapping images of Iro/Ptso (a, b), and Irso/Pteo (c) before
electrochemical activation.
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Figure S3. HAADF-STEM images of Ir1oPtoo (a), Ir20Ptso (b), and IrsoPtso () before
electrochemical activation.
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Figure S4. HR-TEM images (a, b), FTT pattern (c), and line intensity profiles (d) of Irio/Pto.
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Figure S5. HR-TEM images (a, b), FTT pattern (c, d), and line intensity profiles (e) of Iro/Ptso.
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Figure S6. HR-TEM images (a, b), FTT pattern (c, d), and line intensity profiles (e) of Irso/Pteo.
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Figure S7. STEM micrograph and EDX elemental mapping of Iry/Ptso after electrochemical
activation.

Table S1. XRD parameters: lattice constant, mean crystallite size, and microstrain.

Lattice Mean Microstrain
Sample constant, error a [A] crystallite error D [nm] !
2 . e [%]
a[A] size, D [nm]
Pt black 3.9181 0.00023 8.71 0.11 0.55
Ir10/Ptso 3.9145 0.00048 8.13 0.12 0.55
Ir20/Ptso 3.9139 0.00048 7.57 0.11 0.57
Irao/Pteo 3.9123 0.00058 5.88 0.13 0.57
Ir black 3.8415 0.00071 2.91 0.13 0.65
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Figure S8. Simulation of the XRD patterns for Irio/Ptso (a), Ir20/Ptso (b), and Irse/Pteo (c) NPs.
The blue curves are the Pt patterns, the cyan curves are the Ir patterns, and the red curve is
the sum of both contributions. In the simulations done using the generalized Debye
scattering equation, we considered the crystallite size broadening effect only, not the
microstrain contribution.
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Figure S9. CO voltammetry curves of Pt black (a), Ir black (b), Iri0/Ptso (c), Ir20/Ptso (d), and

*Corresponding authors.

|r4o/Ptso (E)

E-mail address: yevheniia.lobko@mff.cuni.cz (Y. Lobko).




L. Blanco-Redondo, Y. Lobko, and K. Veltruska et al. Sustainable Energy & Fuels (2024)

5
E —e— Pt black
G 44 ——Ir,/Plyg
g Iry Pty
o
£ 34 —o— Ir,/Pts,
£ ——Ir black
| =
@& 2
g
s
g o1
=1
é
0 T T T T
40 - 10
=
= a0 k\.—'\"—#
= 51
k=]
& w ey /
o 0 - !
o T
Q, 10 01 02 03 04
T
04 - —_— s
g T T T T T
2 4.0 ——t 5 "
E T
T 35/ 4.00
pal
8 W:Q:
E 264 .’/-—-0—“'—"
2 3.984 | a—s—n—g
© .—
5 32
‘5
s 3.98 . :
_éﬁ 3.2 0.1 02z 03 04
3
=z 30 T T T T T T T T
01 0.2 0.3 04 05 0.6 07 08

Potential [Vl

Figure S10. Chronoamperometry of the detected H,O, current on the ring electrode (a).
Calculated electron transfer number (b) and H,0, selectivity (c) during potential sweep.
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Figure S11. Accelerated stress test: Relative losses in ECSA (a), ORR activity (b), OER activity (c).
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