Supplementary Information

Early-Stage Performance Changes of Gas Diffusion Electrodes for CO₂ Electroreduction to Formate

Verena Theußl, ^{a,b} Henning Weinrich,^a Fabrizio Lisi,^a Hermann Tempel,^a Rüdiger-A. Eichel ^{a,b}

Corresponding Author E-mail: v.theussl@fz-juelich.de

^aInstitute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9),

Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

^bRWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany

Figure S1: Influence of the GDL on the electrode performance measured via the performance indicators electrode potential (a) and faradaic efficiency (b-m).¹

Figure S2: Schematic illustration of the measurement set-up including static GDE test cell (FlexCell), online GC and offline IC.¹

Figure S3: Illustrations of the experimental cell set-up (Flexcell PTFE, Gaskatel, Germany). a) Exterior view. b) Cross section.²

Figure S4: Schematic depiction of the measurement procedure.

Figure S5: Exemplary Nyquist plots derived by PEIS measurements in the Gaskatel cell setup. Reference experiment on a silver plate at various electrode potentials.

Figure S6: Influence of the catalyst loading (a) and the binder content (b) at the faradaic efficiency of the evolving products. (Catalyst loading: 2.3 mg·cm⁻², measurement conditions: batch reactor, 12 ml electrolyte, 1 M KHCO₃, continuous CO₂ supply of 20 ml·min⁻¹, start at room temperature, electrolysis time: 45 min each).

Figure S7: SEM images of the investigated GDEs concerning the influence of the catalyst loading before the electroreduction of CO₂ at 550x magnification, a) Freudenberg E20H GDL, b) 1.1 mg⁻cm⁻², c) 1.3 mg⁻cm⁻², d) 2.3 mg⁻cm⁻², e) 4.2 mg⁻cm⁻², f) 5.8 mg⁻cm⁻², g) 13 mg⁻cm⁻².

Figure S8: SEM images of the investigated GDEs concerning the influence of the catalyst loading after the first cycle electroreduction of CO₂ at 550x magnification, a) 1.1 mg·cm⁻², b) 1.3 mg·cm⁻², c) 2.3 mg·cm⁻², d) 4.2 mg·cm⁻², e) 5.8 mg·cm⁻², f) 13 mg·cm⁻².

Figure S9: SEM cross sections of the investigated GDEs (catalyst loading > 2.3 mg·cm⁻²) concerning the influence of the catalyst loading in the pristine state and after the first cycle electroreduction of CO₂ at 250x magnification, a),d) 4.2 mg·cm⁻², b), e) 5.6 mg·cm⁻² and c), f) 13 mg·cm⁻². For a better visualization, the fracture edges and the catalyst layer are labelled as edges and SnO₂, respectivley, as well as arrows indicating the catalyst in the deeper layers.

Catalyst	Contact Angle			
loading / [mg·cm ⁻²]	GDE (before)		GDL (Nafion coating)	
	[°]		[°]	
0 (GDL)	137.9°	± 5.0	134.3	± 1.0
1.1	119.9°	± 9.8		
1.3	125.8°	± 4.5		
2.3	126.7°	± 2.7		
4.2	126.4°	± 2.5		
5.8	115.9°	±9.7		
13	123.2°	± 1.6		

Table S1: Comparison of the contact angles (1M KHCO₃) for pristine GDL and GDEs to the GDL with Nafion coating only.

Figure S10: Vapor sorption measurements of GDEs with different catalyst loadings: a) 1.1 mg cm^{-2} and b) 1.3 mg cm^{-2} , c) 4.2 mg cm^{-2} and d) 5.8 mg cm^{-2} . Moisture adsorption isotherms of the investigated GDEs in different states – pristine and after cycle 1. Vapor sorption measurements were conducted at 25°C with a relative humidity from 0 to 80%, each humidity point was held for 60 min. Negative values are a result of the device uncertainty, common for a small amount of sample with limited adsorption.

Figure S11: Thermogravimetric analysis of pure Nafion polymer dispersion (15 wt%), the Freudenberg E20H GDL and the Freudenberg E20H GDL coated with Nafion and immersed in KHCO₃ for 7 days. TGA was carried out from room temperature to 1200°C with a heating rate of 10 K·min⁻¹, in oxygen environment.

Figure S12: Thermogravimetric analysis (TGA) of the GDEs before and after electroreduction experiments at catalyst loadings of (a) 2.3 mg·cm⁻² and (b) 13 mg·cm⁻² in the cut out of 70 - 100wt%. TGA was carried out from room temperature to 1200° C with a heating rate of 10 K·min-1 in oxygen environment.

References

- V. Theußl, H. Weinrich, C. Heume, K. Dzieciol, B. Schmid, H. Kungl, H. Tempel and R.-A. Eichel, *ChemElectroChem*, 2023, **202300121**, 13.
- 2 Gaskatel GmbH: www. https://gaskatel.de/shop/elektrochemische-messzellebetriebsbereit-flexcell-ptfe/. Accessed: 22.08.2023, 16:53