Supporting Information

Enhancing FAPbl₃ Perovskite Solar Cell Performance with a Methanesulfonate-Based Additive

Japheth Joseph Yeow Wan Foong,^{1,#} Herlina Arianita Dewi,^{2,#} Ayan A. Zhumekenov,^{1,#} Benny Febriansyah,² Annalisa Bruno,² Teddy Salim,¹ Darrell Jun Jie Tay,^{1,3} Hesham R. Abuzeid,¹ Teck Ming Koh,² Subodh G. Mhaisalkar,^{1,2} Nripan Mathews^{1,2,*}

¹ School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

² Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553.

³ Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

[#] These authors contributed equally to this work

* Corresponding author: nripan@ntu.edu.sg

Materials

Formamidinium iodide (FAI), methylammonium chloride (MACI), and titanium dioxide paste (30 NR-D) were purchased from GreatCell Solar Limited. Lead Iodide (PbI₂) was purchased from Tokyo Chemical Industries Co., Ltd. Formamidine acetate salt (FAAc), methanesulfonic acid (CH₃SO₃H), dimethyl sulfoxide (DMSO), *N*,*N*-dimethylformamide (DMF), 4-*tert*-butyl pyridine (*t*BP), *iso*-propanol (IPA), lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI), acetylacetone, titanium diisopropoxide bis(acetylacetonate) 75 wt% in IPA, chlorobenzene were purchased from Sigma Aldrich. DMF-*d*₇ and DMSO-*d*₆ were purchased from Cambridge Isotope Laboratories, Inc. Octylammonium Iodide (OAI) was synthesized following the previous procedure (Koh *et al. J. Mater. Chem. A*, 2018, **6**, 2122–2128). Titanium (IV) chloride solution was purchased from Fujifilm Wako Pure Chemical Corporation. 2,2',7,7'-Tetrakis[*N*,*N*-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) was purchased from Luminescence Technology Corp. Fluorine-doped tin oxide conductive substrate (FTO) was purchased from YingKuo Shangneng Photoelectric Materials.

Synthesis of Formamidinium Methanesulfonate (FAMeSf)

Formamidinium acetate (FAAc, 99 %, Sigma Aldrich) was dissolved in ethanol and cooled in an ice bath for around 15 mins. Then, methanesulfonic acid (CH_3SO_3H) was added dropwise into the solution at 1.2 equivalent. The solution was stirred for 2 hours and subsequently dried via rotary evaporation at 40 °C. The resulting powder was then dissolved in ethanol and recrystallized with diethyl ether 5 times.

Perovskite Solar Cells Fabrication

Substrate cleaning. FTO substrates were cleaned with decon soap, deionized water, and IPA via ultra-sonication for at least 15 mins in each washing solution/solvent. The substrates were further treated with UV-ozone for 15 mins at 100°C.

Electron transport layer (ETL). The compact TiO_2 (c- TiO_2) was deposited by spray pyrolysis using titanium diisopropoxide bis(acetylacetonate) diluted in IPA in 1:9 ratio + 4 vol% acetylacetone, followed by annealing at 450°C for 1 hour. The mesoporous TiO_2 (m- TiO_2) paste was prepared using titanium dioxide paste (30 NR-D) diluted in anhydrous ethanol in 1:9 ratio and deposited by

spin coating at 3000 rpm for 30 s, followed by sintering at 500 °C for 1 hour. The FTO/c-TiO₂/m-TiO₂ substrates were then post-treated with titanium (IV) chloride (1:50 volume dilution with DI water) at 70°C for 30 mins, followed by annealing at 500°C for 1 hour.

Perovskite deposition. Perovskite precursor solutions were prepared by dissolving 0.348 g FAI, 0.934 Pbl₂, and 35 mol% MACI (for better crystallization) in 1.5 ml DMF/DMSO solvent mixture of 4:1 ratio, respectively. Different concentrations of FAMeSf ranging from 0-5 mol% were added accordingly. The perovskite layer was deposited onto the FTO/c-TiO₂/m-TiO₂ substrate by spin coating at 6000 rpm for 50 s, and using chlorobenzene as antisolvent, followed by annealing at 150°C for 10 mins. Octylammonium iodide (0.01 g OAI dissolved in 3 ml IPA) was deposited as surface passivation by spin coating at 6000 rpm for 50 s without any post-annealing.

Hole transport layer (HTL) and Au deposition. 72.3 mg of Spiro-OMeTAD was dissolved in 1 ml chlorobenzene with the addition of 28.5 μ L TBP and 17.5 μ L Li-TFSI (520 mg/ml in acetonitrile) as dopants. The Spiro-OMeTAD was deposited by dynamic spin-coating at 4000 rpm for 30 s. The 100-nm gold electrode layer was deposited by thermal evaporation as a back contact.

Characterizations

Morphological characterization was done using a Field Emission Scanning Electron Microscope (FESEM, JEOL JSM-7600F, 5 kV, and 10 mA). The steady-state absorbance spectra were recorded using UV-Vis-NIR Spectrophotometer (UV3600, Shimadzu). Time-resolved photoluminescence (TRPL) measurements were carried out on a Picoquant PicoHarp 300 time-correlated single-photon counting (TCSPC) setup using a 405 nm laser excitation. The X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance diffractometer with Cu Kα radiation. The proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a Bruker Advance II (400 MHz) spectrometer. The NMR samples were prepared by dissolving the solid material in DMF- d_7 and DMSO- d_6 . The ultraviolet photoelectron spectroscopy (UPS) and the X-ray photoelectron spectroscopy (XPS) measurements were performed using an AXIS Supra spectrometer (Kratos Analytical Inc., Minibeam) operated at 10 keV, Ar₁₀₀₀⁺ with a raster size of 2×2 mm². The current density-voltage (*J-V*) curves were measured using AM 1.5 sunlight (Newport Oriel Sol3ATM) and a 450-Watt Xenon lamp calibrated using standard Si solar cell. The incident photon-to-current conversion efficiency (IPCE) was measured with PVE300 (Bentham).

Figure S1. (a) ¹H-NMR spectrum of FAMeSf in DMSO-*d*₆, confirming the purity of the material. (b) Powder XRD patterns of FAMeSf before (black) and after (red) its annealing at 150°C for 15 mins, showing no degradation of the material at high temperatures.

Figure S2. Photovoltaic parameters of FAPbI₃ PSCs fabricated using different FAMeSf additive concentrations: (a) PCE, (b) J_{sc}, (c) V_{oc}, and (d) FF.

Figure S3. (a) Histogram showing the reproducibility of 2 mol% FAMeSf-added PSCs with an average PCE of 19.0% for more than 80 devices from different batches. (b) J-V curve of the champion device fabricated using 2 mol% FAMeSf additive.

Figure S4. Long-term stabilities of the pristine (black) and 2 mol% FAMeSf-added (blue) unencapsulated PSCs showing the evolution of their photovoltaic parameters (J_{sc} , V_{oc} , and FF) with time upon prolonged storage in dark, at room temperature and 30% relative humidity (RH).

Figure S5. Band energy alignment between 0, 2, and 5 mol% FAMeSf-added FAPbI₃ perovskite and the charge-transporting layers.

Table S1. The bi-exponential fitting parameters of the TRPL curves for 0, 2, and 5 mol% FAMeSf-added FAPbI₃ perovskite thin films.

FAMeSf additive concentration	fast component: τ_1 , ns	slow component: τ_2 , ns	average: τ_{ave} , ns
0 mol%	32.6 ± 0.2 (70.3%)	451.7 ± 4.5 (29.7%)	157.1 ± 1.5
2 mol%	48.3 ± 0.5 (46.5%)	763.2 ± 8.3 (53.5%)	430.8 ± 4.7
5 mol%	27.4 ± 0.2 (61.5%)	1049 ± 11 (38.5%)	420.9 ± 4.4

Table S2. The ¹H-NMR quantitative analysis of the 0, 2, and 5 mol% FAMeSf-added FAPbI₃ perovskite thin films. The values are relative to the FA amount.

FAMeSf additive concentration	CH(NH₂)₂⁺ or FA	CH₃NH₃⁺ or MA	CH₃SO₃⁻ or MeSf
0 mol%	1.000	0.075	0.000
2 mol%	1.000	0.050	0.010
5 mol%	1.000	0.046	0.037