#### **Supporting information**

### **Chemicals and reagents**

Cobalt nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O,  $\geq$  99.0 %), Copper nitrate hexahydrate (Cu(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O,  $\geq$  99.0 %), nickel nitrate hexahydrate (Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O,  $\geq$  99.0 %), thioacetamide (TAA, C<sub>2</sub>H<sub>5</sub>NS,  $\geq$  99.0 %) and trimesic acid (BTC, C<sub>9</sub>H<sub>6</sub>O<sub>6</sub>,  $\geq$  98.0 %) were purchased from Aladdinlk. Polyvinylalcohol ([C<sub>2</sub>H<sub>4</sub>O]n) was purchased from Sinopharm. N, N-Dimethylformamide (DMF, analytical grade), absolute ethanol (C<sub>2</sub>H<sub>6</sub>O,  $\geq$  95.0 %), hydroxide (KOH,  $\geq$  99.0 %), polyvinyl pyrrolidone (PVP, K-30) were purchased from Kermel.Activated carbon (AC, 968.16 m<sup>2</sup> g<sup>-1</sup>), Carbon cloth, and nickel foam (NF) were obtained from Keliyuan. Deionized water was used for the entire process. Each reagent was of analytical grade and used directly.

### Synthesis of flexible wearable electrodes

The carbon cloth (1x4 cm) was cleaned with acetone solution for 10 minutes, and soaked in 3mol/L hydrochloric acid for 30 minutes. Afterwards, the sample was washed multiple times with ethanol and water, and then subjected to vacuum drying at a temperature of 60 °C for a duration of 12 hours.

To prepare PVA/KOH gel, 2 g PVA was added to 30 ml water and heated at 100 °C for 1 hour until fully dissolved. Natural cooling was followed by adding and stirring 15 mL 6 mol/L KOH and placed in a petri dish to cool overnight.

The resulting slurry from the working electrode preparation method was applied onto the treated carbon cloth, while PVA/KOH gel was the diaphragm and then wrapped with insulating tape.

### Preparation of the working electrode

The obtained sample was used as electrode material and prepared into a slurry with acetylene black and Nafion solution (wt 5 %) according to the mass ratio of 8:1:1. As a binder, Nafion solution was utilized while Acetylene black served as a conductive agent. After application to the nickel foam, the paste was weighed to 1.25 mg. Nickel foam was dried under vacuum at 60 °C for 6 h, and then pressed under 8 Mpa pressure for 3 min to yield the working elect Co-Ni-Cu/S rode.

## **Electrochemical calculation formula**

The specific capacitance (C, F g<sup>-1</sup>) was calculated from the discharge curves using the following equation.

$$C = \frac{2i_m \int V dt}{V_1^2 - V_0^2}$$
(S1)

the specific capacitance  $Q_s$  (C g<sup>-1</sup>) was calculated from the discharge curves using the following equation.

$$Q_s = C \times \Delta V \tag{S2}$$

The energy density  $(E, Wh kg^{-1})$  and power density  $(P, W kg^{-1})$  against two electrodes in the device were calculated using the following equations.

$$E = \frac{1/2C(\Delta V)^2}{3.6}$$
(S3)

$$P = \frac{E \times 3600}{\Delta t}$$
(S4)

The capacitance contribution and diffusion control contribution of the charge storage process are according to the following equation.

$$i(v) = k_1 v + k_2 v^{1/2}$$
 (S5)

Where i(v) is the peak current at a specific voltage,  $k_1$  and  $k_2$  represent constants, and v represents the scan rate.

The contribution of surface and diffusion energy storage processes to charge storage is according to the following equation.

$$i = av^b$$
 (S6)

$$\log (i) = b\log(v) + \log[i_0](a)$$
(S7)

# Supplementary figures



Fig. S1 . (a, b) SEM images of Co-Ni/BTC, (c) SEM images of Co-Ni-Cu/OH,

(d, e, f) Co-Ni-Cu/S, Co-Ni-Mn/S, and Co-Ni-Fe-S, respectively.



Fig. S2. FESEM image and corresponding EDS elemental mapping of Co-Ni-Mn/S.



Fig. S3 . FESEM image and corresponding EDS elemental mapping of Co-Ni-Fe/S.



Fig. S4 . XRD patterns of Co-Ni/BTC.



**Fig. S5.** (a, c, e) CV curves at various scan rates and (b, d, f) GCD curves at various densities of Co-Ni/BTC, Co-Ni-Cu/OH, and Co-Ni-Mn/OH,respectively.



**Fig. S6.** (a, c, e) CV curves at various scan rates and (b, d, f) GCD curves at various densities of Co-Ni-Fe/OH, Co-Ni-Mn/S, and Co-Ni-Fe/S.



**Fig. S7.** (a, c) CV curves at various scan rates and (b, d) GCD curves at various densities of Co-Ni-Mn/S//AC and Co-Ni-Fe/S//AC ASC devices.

| NO. | Samples    | Element | Theoretical values | Measured values by |
|-----|------------|---------|--------------------|--------------------|
|     |            |         | (wt.%)             | ICP-OES (wt.%)     |
| 1   | Co-Ni-Cu/S | Co      | 1.00 %             | 0.89 %             |
|     |            | Ni      | 3.00 %             | 2.76 %             |
|     |            | Cu      | 1.00 %             | 0.92 %             |
| 2   | Co-Ni-Mn/S | Co      | 1.00 %             | 0.92 %             |
|     |            | Ni      | 3.00 %             | 2.88 %             |
|     |            | Fe      | 1.00 %             | 0.74 %             |
| 3   | Co-Ni-Fe/S | Со      | 1.00 %             | 0.94 %             |
|     |            | Ni      | 3.00 %             | 2.79 %             |
|     |            | Mn      | 1.00 %             | 0.83 %             |

Supplementary Table 1. Metal contents in different samples determined by ICP-OES.