Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information (ESI)

Fractal growth of fern-like nanostructured Cu₂O film electrode for electrochemical reduction of CO₂ to ethanol

Deep Lata Singh,^a Ramasamy Shanmugam,^b Vineet Mishra,^a and G. Ranga Rao^a*

^a Department of Chemistry and DST Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras, Chennai-600036, India

^bComputational Insights and Sustainable Research Laboratory (CISRL), CO₂ Research and Green Technologies Centre, Vellore Institute of Technology, Vellore-632014, India

*Corresponding Author Email: grrao@iitm.ac.in

Scheme S1. Schematic diagram of the electrochemical setup (H-cell) used to carry out electrochemical CO₂ reduction.

Figure S1. HR-TEM images of CuP3T5 at different magnifications.

Figure S2. HR-TEM images of CuP5T5 at different magnifications.

Figure S3. Core level O 1s XPS spectra of CuP3T5, CuP4T5 and CuP5T5 electrodes.

Figure S4. Chronoamperometry performances of CuP3T5, CuP4T5 and CuP5T5 film electrodes at the various applied potential of -1.0 to -1.3 V for 1 hour in CO₂ saturated 0.1 M KHCO₃ electrolyte.

Figure S5. Faradaic efficiecies given by of CuP3T5, CuP4T5 and CuP5T5 film electrodes at the various applied potentials of -1.0 to -1.3 V in CO₂ saturated 0.1 M KHCO₃ electrolyte.

Electro-	Potential								
deposited	V vs	Faradaic Efficiencies (%)							
Materials	Ag/AgCl	Ethanol	thanol Methanol Acetone prop						
CuP3T5	-1.0	25.5	3.5 25		2.5				
	-1.1	29.4	2	13	9				
	-1.2	27	0.8	7	3				
	-1.3	4.5	0.5	5	0.5				
CuP4T5	-1.0	74	16.5	0.23	5.5				
	-1.1	80	4	7	3				
	-1.2	41	17	10	4				
	-1.3	4	4	2.4	2				
CuP5T5	-1.0	38.6	1.15 30		13				
	-1.1	51	1	15	8.5				
	-1.2	10	0.2	10	3				
	-1.3	9.8	0.8	7	0				

Table S1. Faradaic efficiecies obtained by applying 1h chronoamperometry.

Calculation of the Faradaic efficiency:

$$FE = \frac{n \times F \times C_i \times V_i}{j \times A \times t} \times 100$$

where, n is the number of electrons, F is the Faraday constant (96485, C/mol), C_i is the concentration of the product in mol/L, V_i is volume of the catholyte in L, j=total current density in A/cm², A= area of the electrode in cm² and t is time in seconds.

Figure S6. HR-SEM images of the film electrodes recorded after the electrochemical studies.

Figure S7. CV curves in the non-faradaic region at different scan rates of 20, 40, 60, 80 and 100 mV s⁻¹ for (a) bare SS-316 with fitted graph, (b) CuP3T5, (c) CuP4T5 and (d) CuP5T5 film electrodes in 0.1 M KHCO₃ electrolyte.

Figure S8. The adsorption binding energy of the intermediates on the surface of $Cu_2O(111)$.

Figure S9. The energy-minimized structures that represent the different intermediates involved in the conversion of CO_2 to C_2H_5OH . The atoms are represented by the color codes Cu-cyan, O-red, C-grey, and H-white. Note: *adsorbed intermediate.

Preparation method	Sample	Substrate	Electrolyte	Product, FE (%)	E vs RHE	Ref.
					or	
		a r		G H 40	(Ag/AgCl)	F1
Galvanostatic	Cu ₂ O	Cu disc	0.1 M KHCO ₃	$C_2H_4, 40$	-0.99	[1]
Flectrodeposition	Cu ₂ O inverse	FTO film		$C_2 H_5 OH, 10$	-0.6	[2]
Licenoucposition	opals	11011111	0.1 M KHC03	НСООН. 34.5	-0.8	[2]
Wet chemical	Cu ₂ O	Glassy carbon	0.5 M KHCO ₃	C ₂ H ₄ , 59	-1.1	[3]
reduction	nanoparticles	electrode				
method	(NPs)					
Electro-redeposition	Cu ₂ (OH) ₃ Cl sol-	Carbon paper	0.1 M KHCO_3	$C_2H_4, 38.5$	-1.2	[4]
	gel			$CH_4, 0.03$		
Electrodeposition	Cu ₂ O-derived	Cu plate	0.1 M KHCO ₃	C ₂ H ₄ , 33.5	-1.1	[5]
r	Cu NPs		•••••••	CH ₄ , 4.0		[-]
Flectrodenosition	Mesoporous	Cu foam	05M	C ₂ H ₄ 37	-0.7	[6]
Licenoucposition	Cu ₂ O	Cu Ioani	NaHCO ₃	02114, 57	0.7	[0]
One-pot wet-	Cu ₂ O NPs/C	Glassy carbon	0.1 M KHCO ₂	C ₂ H ₄ 57 3	-1.1	[7]
chemical		electrode	0.1 11 111003	02114, 07.0		[,]
Precipitation	multihollow	Hydrophobic	2 M KOH	C ₂ H ₄ , 38	-0.61	[8]
	Cu ₂ O	carbon paper		CH ₃ COOH, 4.8		
				C ₂ H ₅ OH, 26.9		
T 1 1		0.1		C ₃ H ₇ OH, 5.5	0.2	[0]
lemplate-assisted	Cu_2O -octhedral	Carbon paper	0.5 M KHCO_3	$CH_{3}OH, 4.9$	-0.3	[9]
synthesis process				$C_2H_5OH, 17.9$		
synthesis process.				031180, 12.0		
In-situ etching	Cu ₂ O@Cu-	Glassy carbon	0.1 M KHCO ₃	CO, 1.8	-1.71	[10]
methods	MOF	electrode		CH ₄ , 63.2		
				C ₂ H ₄ , 16.2		
				HCOOH, 3.8		
Ion track technology	Cu nanowire	Cuback		$C_2H_5OH, 4.1$	0.83	[11]
ion-uack teenhology	networks	electrode in	0.1 WI KIICO3	$C_{2}H_{4} \sim 5$	-0.85	[11]
	notworks	touched with Cu		C_2H_4 , -2		
		plate		C ₂ H ₅ OH, ~1.5		
				C ₃ H ₇ OH, ~3		
				C ₂ H ₆ O2, ~4		
Combine 1	0.00	Constant 1	0.5 M KUCO	$CH_3COOH, \sim 0.3$	1 10	[10]
Dese inversion/	hollow fiber	Copper tube	$0.5 \text{ M KHC} 0_3$	нсоон, 92.3	-1.18	[12]
sintering	nonow noei					
In-situ	Cu/Cu ₂ O		0.1 M KHCO ₃	C ₂ H ₄ , 70.2	-1.03	[13]
reconstructions	nanoclusters					
Wat chamical		Hydophobic	01MK-SO	С.Ц. 38	2.0 мс	[14]
method	nanocrystal	carbon paper	0.1 WI K2004	$C_{2}H_{4}, 30$ $C_{2}H_{5}OH. 30$	Ag/AgCl	[14]
Electrodeposition	Cu ₂ O	Stainless steel-	0.1 M KHCO ₃	C ₂ H ₅ OH, ~80	-1.1 vs	This
1	(CuP4T5)	316		CH ₃ OH, ~4	Ag/AgCl	work
				Acetone, ~7		
				Propanol, ~3		

Table S2. An overview of faradaic efficiencies reported using Cu_2O based catalysts in electrochemical CO_2 reduction.

References:

- 1 D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi and B. S. Yeo, ACS Catal., 2015, 5, 2814–2821.
- 2 X. Zheng, J. Han, Y. Fu, Y. Deng, Y. Liu, Y. Yang, T. Wang and L. Zhang, *Nano Energy*, 2018, 48, 93–100.
- 3 Y. Gao, Q. Wu, X. Liang, Z. Wang, Z. Zheng, P. Wang, Y. Liu, Y. Dai, M. H. Whangbo and B. Huang, *Adv. Sci.*, 2020, **7**, 1902820.
- 4 P. De Luna, R. Quintero-Bermudez, C. T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang and E. H. Sargent, *Nat. Catal.*, 2018, **1**, 103–110.
- 5 R. Kas, R. Kortlever, A. Milbrat, M. T. M. Koper, G. Mul, J. Baltrusaitis, *Phys. Chem. Chem. Phys.*, 2014, 16, 12194–12201.
- 6 A. Dutta, M. Rahaman, N. C. Luedi, M. Mohos and P. Broekmann, ACS Catal., 2016, 6, 3804–3814.
- 7 H. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2019, 141, 4624–4633.
- 8 P. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao and S. H. Yu, *J. Am. Chem. Soc.*, 2020, 142, 6400–6408.
- 9 B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang, P. Wang, J. Zhao, Y. Guo, J. Sun and C. Zhao, ACS Appl. Mater. Interfaces, 2021, 13, 39165–39177.
- 10 X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao, X. Han, W. Guo, S. Cui, H. Huang and J. Qiu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 9904–9910.
- 11 N. Ulrich, M. Schäfer, M. Römer, S. D. Straub, S. Zhang, J. Brötz, C. Trautmann, C. Scheu, B. J. M. Etzold and M. E. Toimil-Molares. *ACS Appl. Nano Mater.*, 2023, **6**, 4190–4200.
- 12 G. Li, Y. Song, C. Zhu, X. Dong, W. Chen, G. Wu, G. Feng, S. Li and W. Wei, J. CO₂ Util., 2023, 70, 102446.
- 13 C. Liu, X. D. Zhang, J. M. Huang, M. X. Guan, M. Xu and Z. Y. Gu, ACS Catal., 2022, 12, 15230–15240.
- 14 Y. Yang, Z. Tan, S. Wang, Y. Wang, J. Hu, Z. Su, Y. Zhao, J. Tai and J. Zhang, *Chem. Commun.*, 2023, **59**, 2445–2448.