Supporting Information

Impact of the hole-transport layer materials on the field-induced degradation of p-i-n perovskite solar cells

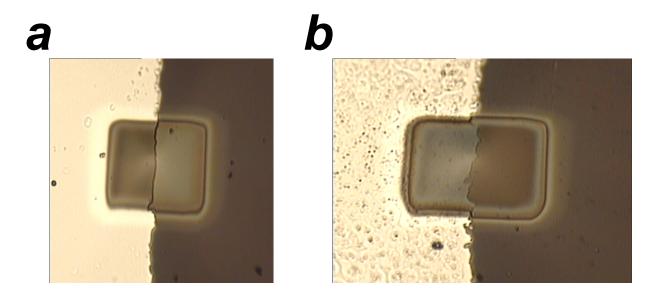
Victoria V. Ozerova^a, Nikita A. Emelianov^a, Lyubov A. Frolova^a, Yuri S. Fedotov^{a,b}, Sergey I.

Bredikhin^b, Sergey M. Aldoshin^a and Pavel A. Troshin^{c,a}

^a Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Prospect 1, 141432 Chernogolovka, Moscow Region, Russia.

^b Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia.

^c Zhengzhou Research Institute, Harbin Institute of Technology, 26 Longyuan East 7th, Jinshui District, Zhengzhou, Henan Province, 450000, China.


Table of contents

Experimental section

Figure S1. Top view optical images of the metal electrodes in $ITO/NiO_x/Cs_{0.15}FA_{0.85}PbI_3/PC_{61}BM/Mg/Ag$ devices recorded after ToF SIMS measurements on the non-exposed to bias device (a) and the device exposed to 1.0 V for 1800 h (b)......3

HTM	Deposition technique	Conditions
PEDOT:PSS	Spin-coating	A thin layer of PEDOT: PSS (Clevios, PH 1000) was prepared by spin-coating the PEDOT: PSS solution filtered through a 0.45 μm poly(tetrafluoroethylene) (PTFE) filter at 3000 rpm for 40 s on the cleaned ITO substrates. Subsequently, PEDOT: PSS films was baked at 165 °C for 15 min in the air.
РТАА	Spin-coating	2.5 mg/ml solution in chlorobenzene, 4500 rpm, glove box
NiO _x	Spin-coating	A colloidal solution of NiO_x nanoparticles (~3 mg/ml) was deposited at 6000 rpm for 30 s and the resulting film was annealed at 150 °C for 15 min. in air.

Table S1. The techniques and conditions used for deposition of HTM films

Figure S1. Top view optical images of the metal electrodes in $ITO/NiO_x/Cs_{0.15}FA_{0.85}PbI_3/PC_{61}BM/Mg/Ag$ devices recorded after ToF SIMS measurements on the non-exposed to bias device (a) and the device exposed to 1.0 V for 1800 h (b).