# Supporting Information for Solid-state p-n tandem dye-sensitized solar cell

Sina Wrede<sup>1</sup>, Bin Cai<sup>1</sup>, Fangwen Cheng<sup>1</sup>, Malin B. Johansson<sup>1</sup>, Tomas Kubart<sup>2</sup>, Carl Hägglund<sup>3</sup>, Haining Tian<sup>1,\*</sup>

<sup>1</sup> Department of Chemistry-Ångström Laboratory, Physical Chemistry, Uppsala University, SE-75120 Uppsala, Sweden

<sup>2</sup> Department of Electrical Engineering, Solid-State Electronics, Uppsala University, SE-

75120 Uppsala, Sweden

<sup>3</sup> Department of Materials Science and Engineering, Solar Cell Technology, Uppsala University, SE-75120 Uppsala, Sweden

Corresponding Author

\* E-mail: <u>haining.tian@kemi.uu.se</u>

### 1. Device structure during fabrication



Figure S1: Device structure of p-ssDSC, n-ssDSC and resulting tandem device.

### 2. Summary of the field of p-ssDSCs

| p-type                     | Dye  | ETM              | Counter   | $V_{oc}$ (mV) | $J_{sc}$ (µA/cm <sup>2</sup> ) | Ref  |
|----------------------------|------|------------------|-----------|---------------|--------------------------------|------|
| Semiconductor              | -    |                  | Electrode |               |                                |      |
| NiO from screen            | P1   | PCBM             | Al        | 620           | 50                             | 1    |
| printing paste             |      |                  |           |               |                                |      |
| NiO from NiCl <sub>2</sub> | PB6  | TiO <sub>2</sub> | Au        | 480           | 23                             | 2    |
| gel                        |      |                  |           |               |                                |      |
| NiO from screen            | PB6  | ZnO              | Al        | 440           | 680                            | 3    |
| printing paste             |      |                  |           |               |                                |      |
| NiO from screen            | TIP  | ZnO              | Al        | 535           | 860                            | 4    |
| printing paste             |      |                  |           |               |                                |      |
| NiO from screen            | TIP  | $SnO_2$          | Al        | 269           | 1140                           | 5    |
| printing paste             |      |                  |           |               |                                |      |
| NiO from screen            | PB6  | $SnO_2$          | Al        | 199           | 1082                           | 5    |
| printing paste             |      |                  |           |               |                                |      |
| NiO from paste             | DPP- | PCBM             | Al        | 325           | 225                            | 6    |
| via spin-coating           | PYRO |                  |           |               |                                |      |
| NiO from screen            | PB6  | ZnO              | ITO       | 407           | 890                            | This |
| printing paste             |      |                  |           |               |                                | work |

**Table S1:** Comparative analysis of existing studies of p-ssDSCs

3. Extra spin-coating layer is beneficial in addition to aging the cells.



**Figure S2**: *J*-*V* curves of p-ssDSC with just an ALD layer of ZnO and an extra layer of solution processed ZnO from  $Zn(acac)_2$  solution, both directly after fabrication and after aging for 8 weeks.

4. Thickness optimization of n-ssDSC without or with PB6 cover to match the current of p-ssDSC



**Figure S3**: *J*-*V* curves of n-ssDSCs fabricated with 1, 2 and 3 layers of TiO<sub>2</sub>, illuminated from the ITO, without PB6 cover.



**Figure S4**: *J*-*V* curves of n-ssDSCs fabricated with 2 layers of TiO<sub>2</sub>, illuminated from the ITO side, with and without PB6 cover.

5. SEM of n-ssDSC and p-ssDSC



Figure S5: SEM cross-section pictures of (left) n-ssDSC and (right) p-ssDSC.

## 6. IPCE of fabricated devices



Figure S6: Recorded IPCE spectra of p-ssDSC and n-ssDSC.

#### 7. Stability of the fabricated solar cells



**Figure S7**: *J-V* curves of two ss-DSCs from Fig. 5 in the main text after storage in ambient conditions for 6 weeks. Note that the p-ssDSC is already aged at the starting point and that p-ssDSC is measured by illumination from the FTO side and that the n-ssDSC was shaded by a p-ssDSC during the measurement.



**Figure S8**: J-V curves of three p-ssDSC (left) and p-ssDSC films (right) from Fig. 5 in the main text after storage in ambient conditions for 6 weeks. Note that the p-ssDSC is already aged at the starting point and that p-ssDSC is measured by illumination from the FTO side and that the n-ssDSC was shaded by a p-ssDSC during the measurement.

#### References

- Zhang, L.; Boschloo, G.; Hammarström, L.; Tian, H. Solid State P-Type Dye-Sensitized Solar Cells: Concept, Experiment and Mechanism. *Phys. Chem. Chem. Phys.* 2016, *18* (7), 5080–5085.
- (2) Tian, L.; Föhlinger, J.; Zhang, Z.; Pati, P. B.; Lin, J.; Kubart, T.; Hua, Y.; Sun, J.;
  Kloo, L.; Boschloo, G.; Hammarström, L.; Tian, H. Solid State P-Type Dye Sensitized
  NiO–Dye–TiO<sub>2</sub> Core–Shell Solar Cells. *Chem. Commun.* 2018, *54* (30), 3739–3742.
- Xu, B.; Tian, L.; Etman, A. S.; Sun, J.; Tian, H. Solution-Processed Nanoporous NiO-Dye-ZnO Photocathodes: Toward Efficient and Stable Solid-State p-Type Dye-Sensitized Solar Cells and Dye-Sensitized Photoelectrosynthesis Cells. *Nano Energy* 2019, *55*, 59–64.
- (4) Xu, B.; Wrede, S.; Curtze, A.; Tian, L.; Pati, P. B.; Kloo, L.; Wu, Y.; Tian, H. An Indacenodithieno[3,2-b]Thiophene-Based Organic Dye for Solid-State p-Type Dye-Sensitized Solar Cells. *ChemSusChem* 2019, *12* (14), 3243–3248.
- (5) Cheng, H.; Liu, Y.; Cai, B.; Hägglund, C.; Kubart, T.; Boschloo, G.; Tian, H. Atomic Layer Deposition of SnO<sub>2</sub> as an Electron Transport Material for Solid-State P-Type Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2022, 5 (10), 12022–12028.
- (6) Pham, T. T. T.; Saha, S. K.; Provost, D.; Farré, Y.; Raissi, M.; Pellegrin, Y.; Blart, E.; Vedraine, S.; Ratier, B.; Aldakov, D.; Odobel, F.; Bouclé, J. Toward Efficient Solid-State p-Type Dye-Sensitized Solar Cells: The Dye Matters. *J. Phys. Chem. C* 2017, *121* (1), 129–139.