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Estimated defects calculation.

Figure S1. TGA analysis of, (a) Pristine UiO-66, and (b) Mesoporous m-UiO-66 in defects 

calculations. 

Thermal decomposition of UiO-66, Zr6O4(OH)4(BDC)6 results in the loss of volatile substances 
and the organic linkers to yield ZrO2. Pristine UiO-66 showed larger weight loss after 400 °C as 
compared to defective m-UiO-66. Weight loss below 100 oC was attributed to moisture and was 
not included in the calculation. The total weight loss in wt.% between 100 ℃ (linker-containing 
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phase) and 500 ℃ (ligands are decomposed) were 50.87% and 40.89% for pristine UiO-66 and 
mesoporous m-UiO-66 respectively.

Molecular weight of pristine UiO-66, (Zr6O4(OH)4(BDC)6) = 1664.04 gmol-1

Molecular weight of (ZrO2)6 = 739.32 gmol-1

Expected % weight loss of linkers in pristine UiO-66 = (1664.04 - 739.32)/1664.04 = 55.6%

Experimental % weight loss of linkers in pristine UiO-66: (95.24 - 44. 37)/95.24 = 53.4%

Experimental % weight loss of linkers defective m-UiO-66: (82.97 - 42. 08)/82.97 = 49.3%

The theoretical loss of the linker was calculated as follows:

If UiO-66 lost 1 linker the formula becomes Zr6O4(OH)4(BDC)5 with molecular weight of 1499.92 
gmol-1

Estimated % weight loss in defective UiO-66 will be; (1499.92 - 739.32)/1499.92 = 51.2 %

Therefore, we can estimate that almost 1 linker in the asymmetric unit is missing in defective m-
UiO-66 resulting in hierarchical mesoporous m-UiO-66.

Figure S2. TGA analysis of, (a) Pristine UiO-66-NH2, and (b) Mesoporous m-UiO-66-NH2 in 

defects calculations. 

Molecular weight of pristine UiO-66-NH2, (Zr6O4(OH)4(BDC)6) = 1754.1 gmol-1

Molecular weight of (ZrO2)6 = 739.32 gmol-1



Expected % weight loss of linkers in pristine UiO-66-NH2= (1754.1 - 739.32)/ 1754.1 = 57.9%

Experimental % weight loss of linkers in pristine UiO-66-NH2: (90.96 - 39. 69)/95.24 = 56.1%

Experimental % weight loss of linkers defective m-UiO-66-NH2: (93.36 – 43.96)/93.36 = 52.9%

The theoretical loss of the linker was calculated as follows:

If UiO-66 lost 1 linker the formula becomes Zr6O4(OH)4(BDC-NH2)5 with molecular weight of 
1574.97 gmol-1

Estimated % weight loss in defective m-UiO-66-NH2 will be; (1574.97 - 739.32)/1574.97 = 53.1 
%

Therefore, we can estimate that almost 1 linker in the asymmetric unit is missing in defective UiO-
66-NH2 resulting in hierarchical mesoporous m-UiO-66-NH2.

Figure S3. (a) Adsorption and desorption of  UiO-66 and its derivatives at 77K. (b) Pore size 

analysis distribution of UiO-66 and its derivatives 



Figure S4. (a) Adsorption and desorption UiO-66-NH2 and its derivatives at 77K. (b) Pore size 

analysis distribution of UiO-66-NH2 and its derivatives 

Figure S5. CO2 sorption studies of, (a) m-UiO-66, (b) Ir(III)@m-UiO-66, (c) m-UiO-66-NH2 and 

(d) Ir(III)@m-UiO-66-NH2.



Figure S6. EDX spectrum of, (a) Ir(III)@m-UiO-66 and, (b) Ir(III)@m-UiO-66-NH2.



Figure S7. SEM images of (a) m-UiO-66, (b) m-UiO6-6-NH2, (c) Ir(III)@m-UiO-66, and (d) 

Ir(III)@m-UiO-66-NH2.

Figure S8. Elementary mapping of Ir(III)@m-UiO-66-NH2.



Figure S9. 1H NMR analysis of Ir(III) complex and Ir(III)@m-UiO-66.



Figure S10: 1H NMR analysis of Ir(III) complex and Ir(III)@m-UiO-66-NH2.



Figure S11. XPS spectra of m-UiO-66 and Ir(III)@m-UiO-66.

Fi
gure S12. XPS spectra of m-UiO-66-NH2 and Ir(III)@m-UiO-66-NH2.



Figure S13. XPS analysis of Zr 3d in (a) Ir(III)@m-UiO-66 and (b) Ir(III)@m-UiO-66-NH2.

Figure S14. 1H NMR analysis of formate detection and quantification.



Figure S15. Catalysis optimisation studies conditions, 10 mL of water and 3.55 mmol of base (1/4 

H2:CO2 total pressure 50 bar), time 24 h, temperature; 140 °C  (a) catalyst load studies and, (b) 

time studies with 8 x 10-7 moles of catalyst.  

Figure S16. (a) Recyclability studies, (b) PXRD of recovered material after catalysis.



 Figure S17. FTIR analysis of (a) Ir(III)@m-UiO-66 and (b) Ir(III)@m-UiO-66-NH2 before and 
after catalysis.

Figure S18. XPS analysis of Zr 3d in, (a) Ir(III)@m-UiO-66 and (b) Ir(III)@m-UiO-66-NH2 
before and after catalysis.



Figure S19. XPS analysis of O 1s in, (a) Ir(III)@m-UiO-66 and (b) Ir(III)@m-UiO-66-NH2 
before and after catalysis.

Table S1: Leaching tests for catalysts

Sample ID % Ir content % Zr content
Ir(III)@m-UiO-66 0.0003 0.0001
Ir(III)@m-UiO-66-NH2 0.0002 0.0001


