Table S1 TG-DTA measurement of AgCuCeO₂ZrO₂ catalysts at each temperature

Catalysts	200-400 (°C)	400-600 (°C)	008-006 (°C)	Total (mg)
1Ag9Cu45Ce45Zr	0.20	1.17	2.07	3.44
2Ag8Cu22.5Ce67.5Zr	0.28	1.28	1.71	3.27
2Ag8Cu45Ce45Zr	0.62	0.3	0.59	1.51
2Ag8Cu67.5Ce22.5Zr	0.04	2.32	1.87	4.23
3Ag7Cu45Ce45Zr	-0.03	0.43	3.39	3.79
10Cu45Ce45Zr	0.11	0.96	2.13	3.21

Table S2 Nitrogen adsorption-desorption measurement of $AgCuCeO_2ZrO_2$ catalysts.

Sample name	BET SA ^{*1} (m²/g)	Total PV ^{*2} (cm ³ /g)	Avg. PD ^{*3} (nm)	BJH SA ^{*1} (m²/g)	BJH PV ^{*2} (cm ³ /g)	BJH PD ^{*3} (nm)
10Cu45Ce45Zr b	37	0.11	12	51	0.11	9.2
10Cu45Ce45Zr a	39	0.14	9.9	46	0.13	3.7
1Ag9Cu45Ce45Zr b	27	0.10	13	39	0.10	9.2
1Ag9Cu45Ce45Zr a	40	0.12	12	36	0.14	3.7
2Ag8Cu22.5Ce67.5Zr b	24	0.12	20	30	0.12	9.2
2Ag8Cu22.5Ce67.5Zr a	37	0.14	15	27	0.14	3.7
2Ag8Cu45Ce45Zr b	28	0.10	14	39	0.10	9.2
2Ag8Cu45Ce45Zr a	28	0.09	13	32	0.13	3.7
2Ag8Cu67.5Ce22.5Zr b	49	0.18	15	67	0.18	9.2
2Ag8Cu67.5Ce22.5Zr a	93	0.27	12	69	0.28	3.7
	0					

*1 Surface **Agra**, **u**⁴ **5 Corf**, **b** me, *3 Pore dia fineter, **b** before **1**, **6** a: after **4** the read **1** on **5.3**

Table S3 Elemental analysis of 2Ag8Cu67.5Ce22.5Zr catalyst before and after reaction by XRF

	CeO ₂	ZrO ₂	CuO	Ag
Before (%)	55.84	30.90	10.34	2.92
	CeO ₂	ZrO ₂	Cu	Ag
	_	Δ		

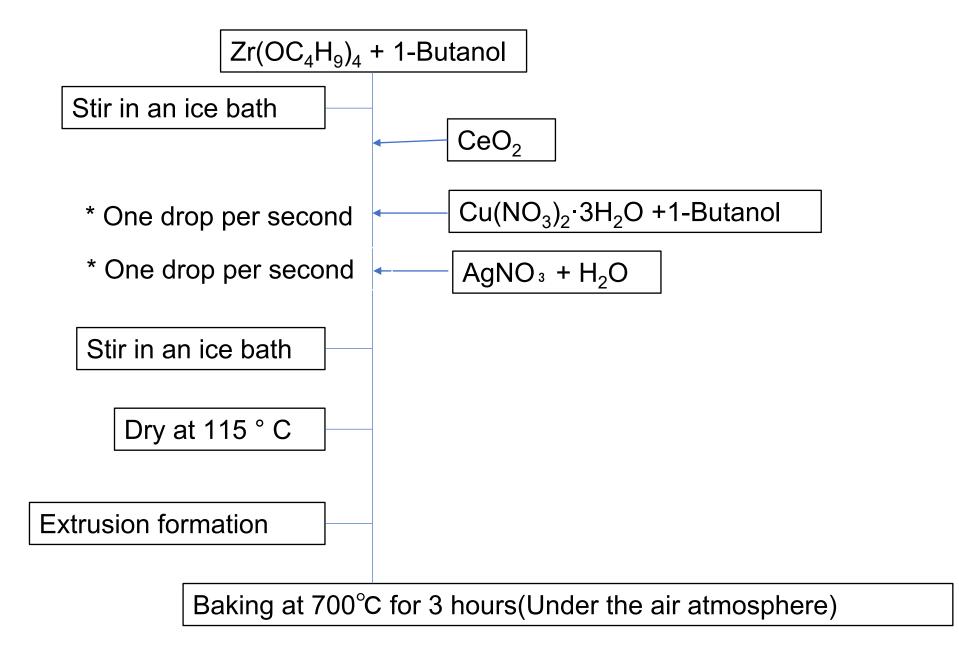
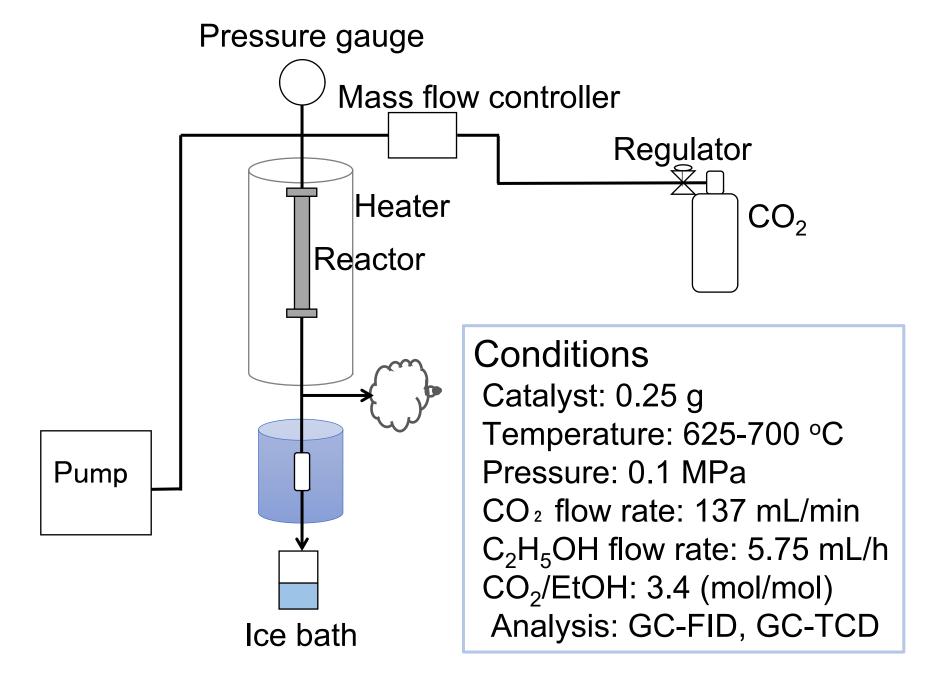



Fig. S1 A flowchart of preparation of CuCeO₂ZrO₂ and AgCuCeO₂ZrO₂ catalysts

2Ag8Cu45Ce45Zr catalyst as an example was prepared as follows: First, zirconium (IV) butoxide (8.76 g) and 1-butanol (9.95 g) were placed into a beaker (200 ml) and stirred on a magnetic stirrer with a hot plate, and ceria (2.25 g) was added to obtain a mixture including support components. Next, a solution of copper nitrate trihydrate (1.52 g) and 1-butanol (5.57 g) prepared was dropwise added to the mixture with a Pasteur pipette at 0°C by one drop per second. Further, silvernitrate(I) (0.16 g) dissolved in water (0.32 g) was also dropwise added to the mixture with a Pasteur pipette at 0°C by one drop per second. The resulted mixture was stirred for 1 hour at 0 °C and then heated to 115 °C using an oil bath with stirring. Thereafter, the obtained gel was heated with heating rate of 5°C/min and was calcined at 700°C for 3 hours in an air atmosphere. In naming 2Ag8Cu45Ce45Zr, 2 means wt% of silver metal, 8 means wt% of copper metal, 45 before Ce means wt% of CeO₂ and 45 before Zr means wt% of ZrO₂. Other CuCeO₂ZrO₂ and AgCuCeO₂ZrO₂ catalysts were prepared similarly.

Fig. S2 Reaction apparatus for dry reforming of ethanol

Dry reforming of ethanol is shown in eq. (1).

 $C_2H_5OH + CO_2 \rightarrow 3H_2 + 3CO$

Ethanol and CO_2 conversions were calculated on the basis of eqs. (2) and (3), respectively.

.....(1)

Ethanol conversion (%)

= $100 \times (W(EtOH)_{int} (g) - W(EtOH)_{prod} (g)) / W(EtOH)_{int} (g) \dots (2)$ where $W(EtOH)_{int}$ is the weight of ethanol introduced and $W(EtOH)_{prod}$ is the weight of ethanol in liquid product.

 CO_2 conversion (%) =

100 x $(W(CO_2)_{int} (g) - W(CO_2)_{prod} (g))/W(CO_2)_{int} (g)$ (3) where $W(CO_2)_{int}$ is the weight of CO_2 introduced and $W(CO_2)_{prod}$ is the weight of CO_2 in gas product.

introduced; EtOH_{prod}: Ethanol in liquid product

Reverse water gas shift reaction $CO_2 + H_2 \rightarrow CO + H_2O$

Decomposition of ethanol $C_2H_5OH \rightarrow CO + CH_4 + H_2$

Decomposition of methane $CH_4 \rightarrow C + 2H_2$

Dry reforming of methane $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

Fig. S3 Side reactions