Supporting Information

Facile and Scalable Bilayer Polymer Encapsulation to Achieve Long-term Stability of Perovskite Solar Cells Under Harsh Humid Conditions

Rohith Kumar Raman¹, Saraswathi Ganesan², Ananthan Alagumalai², Vidya Sudhakaran Menon², Suresh Krishnan³, Senthil A. Gurusamy Thangavelu², , Ananthanarayanan Krishnamoorthy²*

¹Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, Pin Code-603203.

²Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, Pin Code-603203.

³Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, Pin Code-603203.

E-mail: ananthak@srmist.edu.in

Fig. S1 (a) - (d) Water contact angle images of polymers coated on glass.

Fig. S2 (a) – (c) Photographs of bare and encapsulated absorbers kept at humid conditions (80 ± 5 % RH, 25 ± 3 °C).

Fig. S3 (a) Absorbance plot of PU encapsulated $FA_{0.9}Cs_{0.1}PbI_3$ absorber films, (b) PL emission spectra of PU encapsulated $FA_{0.9}Cs_{0.1}PbI_3$ absorber films, (c) Diffraction patterns of PU encapsulated $FA_{0.9}Cs_{0.1}PbI_3$ absorber films kept at 25 ± 3 °C and 80 ± 5% RH.

Fig. S4 Digital photographs of encapsulated absorbers dipped in water (a) photographs at 0 h, b) photographs at 3h and (c) photographs at 8h (PU encapsulated absorber started to degrade to Pbl₂ after dipping in water).

Fig. S5 a) Cross-sectional SEM image of PMMA encapsulated PSC and (b) Crosssectional SEM image of PU encapsulated PSC.

Fig. S6 Schematic representation of PSCs kept in a desiccator with water to achieve humid condition (80±5% RH).