Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

The effect of electrolyte with binary solvents to improve the cycling performance of rechargeable lithium-oxygen batteries

Tie Liu, a, * Wenjing Li, a Guangwei Zhang a and Aishui Yu b

 ^a School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China. E-mail: lime1032@163.com
^b Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China.

The pre-treatment process of MCNTs

At first, 50 mg carbon nanotubes were prepared and dispersed in a mixed solution (60 mL) of nitric acid (60 *wt* %) and sulfuric acid (98 *wt* %) with a volume ratio of 1:3 at 80 °C for 8 h. Then, the acidified carbon nanotubes were cleaned with deionized water until the filtrate was neutral. After vacuum drying at 80 °C for overnight, it was subsequently calcined at 800 °C for 2 h in Ar protective atmospheres at a ramp rate of 5°C min⁻¹ to obtain the MCNTs sample.

Table. S1 Physical properties of common solvents in LOBs

Solvents	DN/AN	Boiling point/ °C	Density/ (g cm ⁻³)
 G3	none	216	0.986
G4	16.6/11.7	276	1.009
DMSO	29.8/19.3	189	1.100
DMC	23.9/10.2	90	1.069

Notes: DN, Donor number; AN, Acceptor number

Fig. S1 The viscosity values of the G3/DMSO based electrolyte with different salt concentrations.

Fig. S2 The voltage profiles of Li plating/striping cycling using G3/DMSO based electrolytes with different volume ratio under 0.1 mA cm⁻².

Fig. S3 Flammability test of the 1 M LiTFSI G3/DMSO electrolyte using a butane flame: (a) ignition for 20 s and (b) after ignition.

Fig. S4 (a) SEM image and (b) low TEM image of post-treatment MCNT, respectively.

Fig. S5 (a) Raman spectrum and (b) N₂ adsorption–desorption isotherms and pore-size distribution of post-treatment MCNT, respectively.

Sample	Surface	Total pore	Average pore
	Area/	volume/	Diameter/
	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(nm)
MWCNT	160.504	1.102	27.47

Table. S2 Theoretical electromotive force and theoretical energy density of post-treatment MCNT

Fig. S6 The initial 1st full discharge-charge profiles of MCNT cathode using various electrolytes at 0.05 mA cm⁻².

Fig. S7 (a)The full discharge-charge profiles at 0.05 mA cm⁻² and (b) the corresponding coulomb efficiency of MCNT cathode using G3/DMSO based electrolyte with a volume ratio of 1:4.

Fig. S8 The EIS spectra of MCNT LOBs using marked electrolytes.

Fig. S9 The XPS spectra of Li 1s for MCNT cathodes after full discharged process in: (a) DMSO based battery and (b) G3/DMSO based battery

Fig. S10 SEM images of (a) the pristine MCNT cathode without discharge, 1st discharged products from (b) the G3 and (c) DMSO based battery